GeneSrF

Gene selection with random forests.

Info

Members (researchers): Ramon Díaz Uriarte

Research Groups: Bioinformatics and Computational Biology in Cancer Evolution

Contact Email: ramon.diaz@iib.uam.es

Tool Repository: http://genesrf.iib.uam.es/

Documentation: http://genesrf.iib.uam.es/help/genesrf-help.html

Publications DOI: doi:10.1186/1471-2105-8-328

No Institution assigned.
Application domain:

Artificial Intelligence, Computational Techniques, Data Analysis, Frequentist analysis, High-performance Computing, Machine Learning in Biology, Multivariate statistics, Non-parametric statistics, Parallel Computing, RNA Sequencing (RNA-seq), Statistical Methods for Biology, Transcriptomics

Technical details
Type of application
  • Web-service
Software compatibility
  • Linux
  • Mac
  • Windows
Hardware requirements
Programming language
  • Python
  • R
Type of containerization
  • None
Wrapper type
  • None
Input file formats
  • csv
Output file formats
  • csv
  • Other
Compatibility with other tools