Biodiversity and Ecosystem Functioning Laboratory (BioFunLab)

Currently there are no tools associated with this research group.

There are no service units associated with this research group.

Research topics:

Amplicon Sequencing, Genome Assembly, Genome Sequencing, Genomic Annotation, Genomics, Mapping, Metabolomics, Metagenomics, Metatranscriptomics, Microbial communities, Molecular evolution, Omics, Phylogenetic Analysis, Population genomics, Proteomics, RNA Sequencing (RNA-seq), Sequence Alignment, Sequence analysis, Transcriptomics

Publications

Jiménez-Guerrero, I., Acosta-Jurado, S., Navarro-Gómez, P., Fuentes-Romero, F., Alías-Villegas, C., López-Baena, F.-J., & Vinardell, J.-M. (2025). TtsI: Beyond Type III Secretion System Activation in Rhizobia. Applied Microbiology, 5(1), 4. https://doi.org/10.3390/applmicrobiol5010004

Saati-Santamaría, Z., Navarro-Gómez, P., Martínez-Mancebo, J. A., Juárez-Mugarza, M., Flores, A., & Canosa, I. (2025). Genetic and species rearrangements in microbial consortia impact biodegradation potential. The ISME Journal, 19(1). https://doi.org/10.1093/ismejo/wraf014

Cook, N. M., Gobbato, G., Jacott, C. N., Marchal, C., Hsieh, C. Y., Lam, A. H. C., Simmonds, J., del Cerro, P., Gomez, P. N., Rodney, C., Cruz-Mireles, N., Uauy, C., Haerty, W., Lawson, D. M., & Charpentier, M. (2025). Autoactive CNGC15 enhances root endosymbiosis in legume and wheat. Nature, 638(8051), 752–759. https://doi.org/10.1038/s41586-024-08424-7

Fuentes-Romero, F., Alías-Villegas, C., Navarro-Gómez, P., Acosta-Jurado, S., Bernabéu-Roda, L. M., Cuéllar, V., Soto, M. J., & Vinardell, J. M. (2024). Methods for Studying Swimming and Surface Motilities in Rhizobia. Host-Pathogen Interactions, 205–217. https://doi.org/10.1007/978-1-0716-3617-6_13

Navarro-Gómez, P., Alías-Villegas, C., Jiménez-Guerrero, I., Fuentes-Romero, F., López-Baena, F.-J., Acosta-Jurado, S., & Vinardell, J.-M. (2024). Sinorhizobium fredii HH103 flgJ is a flagellar gene induced by genistein in a NodD1- and TtsI- dependent manner. Plant and Soil, 505(1–2), 845–862. https://doi.org/10.1007/s11104-024-06713-8

Navarro-Gómez, P., Fuentes-Romero, F., Pérez-Montaño, F., Jiménez-Guerrero, I., Alías-Villegas, C., Ayala-García, P., Almozara, A., Medina, C., Ollero, F.-J., Rodríguez-Carvajal, M.-Á., Ruiz-Sainz, J.-E., López-Baena, F.-J., Vinardell, J.-M., & Acosta-Jurado, S. (2023). A complex regulatory network governs the expression of symbiotic genes in Sinorhizobium fredii HH103. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1322435

Fuentes-Romero, F., Navarro-Gómez, P., Ayala-García, P., Moyano-Bravo, I., López-Baena, F.-J., Pérez-Montaño, F., Ollero-Márquez, F.-J., Acosta-Jurado, S., & Vinardell, J.-M. (2022). The nodD1 Gene of Sinorhizobium fredii HH103 Restores Nodulation Capacity on Bean in a Rhizobium tropici CIAT 899 nodD1/nodD2 Mutant, but the Secondary Symbiotic Regulators nolR, nodD2 or syrM Prevent HH103 to Nodulate with This Legume. Microorganisms, 10(1), 139. https://doi.org/10.3390/microorganisms10010139

Alías-Villegas, C., Fuentes-Romero, F., Cuéllar, V., Navarro-Gómez, P., Soto, M. J., Vinardell, J.-M., & Acosta-Jurado, S. (2022). Surface Motility Regulation of Sinorhizobium fredii HH103 by Plant Flavonoids and the NodD1, TtsI, NolR, and MucR1 Symbiotic Bacterial Regulators. International Journal of Molecular Sciences, 23(14), 7698. https://doi.org/10.3390/ijms23147698

Acosta‐Jurado, S., Alias‐Villegas, C., Navarro‐Gómez, P., Almozara, A., Rodríguez‐Carvajal, M. A., Medina, C., & Vinardell, J. (2020). Sinorhizobium fredii HH103 syrM inactivation affects the expression of a large number of genes, impairs nodulation with soybean and extends the host‐range to Lotus japonicus. Environmental Microbiology, 22(3), 1104–1124. Portico. https://doi.org/10.1111/1462-2920.14897

Crespo-Rivas, J. C., Navarro-Gómez, P., Alias-Villegas, C., Shi, J., Zhen, T., Niu, Y., Cuéllar, V., Moreno, J., Cubo, T., Vinardell, J. M., Ruiz-Sainz, J. E., Acosta-Jurado, S., & Soto, M. J. (2019). Sinorhizobium fredii HH103 RirA Is Required for Oxidative Stress Resistance and Efficient Symbiosis with Soybean. International Journal of Molecular Sciences, 20(3), 787. https://doi.org/10.3390/ijms20030787

Acosta‐Jurado, S., Rodríguez‐Navarro, D., Kawaharada, Y., Rodríguez‐Carvajal, M. A., Gil‐Serrano, A., Soria‐Díaz, M. E., Pérez‐Montaño, F., Fernández‐Perea, J., Niu, Y., Alias‐Villegas, C., Jiménez‐Guerrero, I., Navarro‐Gómez, P., López‐Baena, F. J., Kelly, S., Sandal, N., Stougaard, J., Ruiz‐Sainz, J. E., & Vinardell, J. (2019). Sinorhizobium fredii HH103 nolR and nodD2 mutants gain capacity for infection thread invasion of Lotus japonicus Gifu and Lotus burttii. Environmental Microbiology, 21(5), 1718–1739. Portico. https://doi.org/10.1111/1462-2920.14584

Temprano-Vera, F., Rodríguez-Navarro, D. N., Acosta-Jurado, S., Perret, X., Fossou, R. K., Navarro-Gómez, P., Zhen, T., Yu, D., An, Q., Buendía-Clavería, A. M., Moreno, J., López-Baena, F. J., Ruiz-Sainz, J. E., & Vinardell, J. M. (2018). Sinorhizobium fredii Strains HH103 and NGR234 Form Nitrogen Fixing Nodules With Diverse Wild Soybeans (Glycine soja) From Central China but Are Ineffective on Northern China Accessions. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.02843

Acosta-Jurado, S., Navarro-Gómez, P., Crespo-Rivas, J.-C., Medina, C., Murdoch, P. del S., Cuesta-Berrio, L., Rodríguez-Carvajal, M.-Á., Ruiz-Sainz, J.-E., & Vinardell, J.-M. (2017). The Sinorhizobium (Ensifer) fredii HH103 rkp-2 region is involved in the biosynthesis of lipopolysaccharide and exopolysaccharide but not in K-antigen polysaccharide production. Plant and Soil, 417(1–2), 415–431. https://doi.org/10.1007/s11104-017-3268-z

Toro, N., Villadas, P. J., Molina-Sánchez, M. D., Navarro-Gómez, P., Vinardell, J. M., Cuesta-Berrio, L., & Rodríguez-Carvajal, M. A. (2017). The underlying process of early ecological and genetic differentiation in a facultative mutualistic Sinorhizobium meliloti population. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-00730-7

Jiménez-Guerrero, I., Acosta-Jurado, S., Del Cerro, P., Navarro-Gómez, P., López-Baena, F., Ollero, F., Vinardell, J., & Pérez-Montaño, F. (2017). Transcriptomic Studies of the Effect of nod Gene-Inducing Molecules in Rhizobia: Different Weapons, One Purpose. Genes, 9(1), 1. https://doi.org/10.3390/genes9010001

Acosta-Jurado, S., Navarro-Gómez, P., Murdoch, P. del S., Crespo-Rivas, J.-C., Jie, S., Cuesta-Berrio, L., Ruiz-Sainz, J.-E., Rodríguez-Carvajal, M.-Á., & Vinardell, J.-M. (2016). Exopolysaccharide Production by Sinorhizobium fredii HH103 Is Repressed by Genistein in a NodD1-Dependent Manner. PLOS ONE, 11(8), e0160499. https://doi.org/10.1371/journal.pone.0160499

Acosta-Jurado, S., Alias-Villegas, C., Navarro-Gómez, P., Zehner, S., Murdoch, P. del S., Rodríguez-Carvajal, M. A., Soto, M. J., Ollero, F.-J., Ruiz-Sainz, J. E., Göttfert, M., & Vinardell, J.-M. (2016). The Sinorhizobium fredii HH103 MucR1 Global Regulator Is Connected With the nod Regulon and Is Required for Efficient Symbiosis With Lotus burttii and Glycine max cv. Williams. Molecular Plant-Microbe Interactions®, 29(9), 700–712. https://doi.org/10.1094/mpmi-06-16-0116-r

Pérez-Montaño, F., Jiménez-Guerrero, I., Acosta-Jurado, S., Navarro-Gómez, P., Ollero, F. J., Ruiz-Sainz, J. E., López-Baena, F. J., & Vinardell, J. M. (2016). A transcriptomic analysis of the effect of genistein on Sinorhizobium fredii HH103 reveals novel rhizobial genes putatively involved in symbiosis. Scientific Reports, 6(1). https://doi.org/10.1038/srep31592

Research lines
    Funding
      More info

      HPC Resources: in house