View Profile
Institution: CIB
Research Groups: Aspergillus Cell Biology
Position: Investigador Cientifico
Home page: https://www.cib.csic.es/research/molecular-and-cellular-biosciences/aspergillus-cell-biology
Contact email: eespeso@cib.csic.es
BCB Committee: No committees assigned.
BCB Community: No communities assigned.
BCB Tools:
BCB Services: Proteomics and Genomics Facility at CIB Margarita Salas
Research topics: Microbial Communities, Model organisms, Gene regulatory networks, Sequence analysis, Mapping, Sequence Alignment, Structural bioinformatics, Mutation Analysis and design, Protein/Nucleic Acid design, Structure prediction, Regulatory biology, Image analysis, Proteing-Protein Interactions, Expression Profiling, RNA Sequencing (RNA-seq)
Publications
Astacio, J. D., Rodríguez-Pires, S., Melgarejo, P., De Cal, A., & Espeso, E. A. (2025). Differences in Behavior During Early Nectarine Infection Among Main Monilinia spp. Causing Brown Rot. Phytopathology®, 115(3), 269–280. https://doi.org/10.1094/phyto-05-24-0159-r
Requena, E., Veloso, J., Espeso, E. A., & Larena, I. (2025). Hybrid assembly of Penicillium rubens genomes unveils high conservation of genome structural organisation and the presence of Numts in nuclear DNA. IMA Fungus, 16. https://doi.org/10.3897/imafungus.16.145175
Picazo, I., & Espeso, E. A. (2024). Interconnections between the Cation/Alkaline pH-Responsive Slt and the Ambient pH Response of PacC/Pal Pathways in Aspergillus nidulans. Cells, 13(7), 651. https://doi.org/10.3390/cells13070651
Pandit, S. S., Zheng, J., Yi, Y., Lorber, S., Puel, O., Dhingra, S., Espeso, E. A., & Calvo, A. M. (2023). Homeobox Transcription Factor HbxA Influences Expression of over One Thousand Genes in the Model FungusAspergillus nidulans. https://doi.org/10.1101/2023.03.30.533655
Agirrezabala, Z., Guruceaga, X., Martin-Vicente, A., Otamendi, A., Fagoaga, A., Fortwendel, J. R., Espeso, E. A., & Etxebeste, O. (2023). Identification and functional characterization of the putative members of the CTDK-1 kinase complex as regulators of growth and development in the genusAspergillus. https://doi.org/10.1101/2023.06.08.544166
Astacio, J. D., Espeso, E. A., Melgarejo, P., & De Cal, A. (2023). Monilinia fructicola Response to White Light. Journal of Fungi, 9(10), 988. https://doi.org/10.3390/jof9100988
Requena, E., Carreras, M., Espeso, E. A., & Larena, I. (2023). A role for Penicillium rubens strain 212 xylanolytic system in biocontrol of Fusarium wilt disease in tomato plants. European Journal of Plant Pathology, 167(4), 621–635. https://doi.org/10.1007/s10658-023-02700-4
Rodríguez-Pires, S., Espeso, E. A., Rasiukevičiūtė, N., Melgarejo, P., & De Cal, A. (2021). Light-Photoreceptors and Proteins Related to Monilinia laxa Photoresponses. Journal of Fungi, 7(1), 32. https://doi.org/10.3390/jof7010032
Picazo, I., Etxebeste, O., Requena, E., Garzia, A., & Espeso, E. A. (2020). Defining the transcriptional responses ofAspergillus nidulansto cation/alkaline pH stress and the role of the transcription factor SltA. https://doi.org/10.1101/2020.04.16.044396
Picazo, I., Etxebeste, O., Requena, E., Garzia, A., & Espeso, E. A. (2020). Defining the transcriptional responses of Aspergillus nidulans to cation/alkaline pH stress and the role of the transcription factor SltA. Microbial Genomics, 6(8). https://doi.org/10.1099/mgen.0.000415
Carreras, M., Espeso, E. A., Gutierrez-Docio, A., Moreno-Fernandez, S., Prodanov, M., Hernando, M. D., Melgarejo, P., & Larena, I. (2020). Exploring the Extracellular Macromolecular Composition of Crude Extracts of Penicillium rubens Strain 212 for Elucidation Its Mode of Action as a Biocontrol Agent. Journal of Fungi, 6(3), 131. https://doi.org/10.3390/jof6030131
Markina-Iñarrairaegui, A., Spielvogel, A., Etxebeste, O., Ugalde, U., & Espeso, E. A. (2020). Tolerance to alkaline ambient pH in Aspergillus nidulans depends on the activity of ENA proteins. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-71297-z
Rodríguez-Pires, S., Melgarejo, P., De Cal, A., & Espeso, E. A. (2020). Pectin as Carbon Source for Monilinia laxa Exoproteome and Expression Profiles of Related Genes. Molecular Plant-Microbe Interactions®, 33(9), 1116–1128. https://doi.org/10.1094/mpmi-01-20-0019-r
Manoli, M., & Espeso, E. A. (2019). Modulation of calcineurin activity in Aspergillus nidulans: the roles of high magnesium concentrations and of transcriptional factor CrzA. Molecular Microbiology, 111(5), 1283–1301. Portico. https://doi.org/10.1111/mmi.14221
Etxebeste, O., Otamendi, A., Garzia, A., Espeso, E. A., & Cortese, M. S. (2019). Rewiring of transcriptional networks as a major event leading to the diversity of asexual multicellularity in fungi. https://doi.org/10.1101/627414
Otamendi, A., Perez-de-Nanclares-Arregi, E., Oiartzabal-Arano, E., Cortese, M. S., Espeso, E. A., & Etxebeste, O. (2019). Developmental regulators FlbE/D orchestrate the polarity site-to-nucleus dynamics of the fungal bZIP transcription factor FlbB. Cellular and Molecular Life Sciences, 76(21), 4369–4390. https://doi.org/10.1007/s00018-019-03121-5
Otamendi, A., Espeso, E. A., & Etxebeste, O. (2019). Identification and Characterization of Aspergillus nidulans Mutants Impaired in Asexual Development under Phosphate Stress. Cells, 8(12), 1520. https://doi.org/10.3390/cells8121520
Rodríguez-Pires, S., Espeso, E. A., Baró-Montel, N., Torres, R., Melgarejo, P., & De Cal, A. (2019). Labeling of Monilinia fructicola with GFP and Its Validation for Studies on Host-Pathogen Interactions in Stone and Pome Fruit. Genes, 10(12), 1033. https://doi.org/10.3390/genes10121033
Villarino, M., Espeso, E. A., Melgarejo, P., & Larena, I. (2018). Transformation of Penicillium rubens 212 and Expression of GFP and DsRED Coding Genes for Visualization of Plant-Biocontrol Agent Interaction. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.01653
Pandit, S. S., Lohmar, J. M., Ahmed, S., Etxebeste, O., Espeso, E. A., & Calvo, A. M. (2018). UrdA Controls Secondary Metabolite Production and the Balance between Asexual and Sexual Development in Aspergillus nidulans. Genes, 9(12), 570. https://doi.org/10.3390/genes9120570
Feng, X., Ramamoorthy, V., Pandit, S. S., Prieto, A., Espeso, E. A., & Calvo, A. M. (2017). cpsA regulates mycotoxin production, morphogenesis and cell wall biosynthesis in the fungus Aspergillus nidulans. Molecular Microbiology, 105(1), 1–24. Portico. https://doi.org/10.1111/mmi.13682
Hernández-Ortiz, P., & Espeso, E. A. (2017). Spatiotemporal dynamics of the calcineurin target CrzA. Cellular Signalling, 29, 168–180. https://doi.org/10.1016/j.cellsig.2016.11.005
Loss, O., Bertuzzi, M., Yan, Y., Fedorova, N., McCann, B. L., Armstrong‐James, D., Espeso, E. A., Read, N. D., Nierman, W. C., & Bignell, E. M. (2017). Mutual independence of alkaline‐ and calcium‐mediated signalling in Aspergillus fumigatus refutes the existence of a conserved druggable signalling nexus. Molecular Microbiology, 106(6), 861–875. Portico. https://doi.org/10.1111/mmi.13840
Villarino, M., Etxebeste, O., Mendizabal, G., Garzia, A., Ugalde, U., & Espeso, E. A. (2017). Boron Tolerance in Aspergillus nidulans Is Sustained by the SltA Pathway Through the SLC-Family Transporters SbtA and SbtB. Genes, 8(7), 188. https://doi.org/10.3390/genes8070188
Espeso, E. A. (2016). The CRaZy Calcium Cycle. Yeast Membrane Transport, 169–186. https://doi.org/10.1007/978-3-319-25304-6_7
Mellado, L., Arst, H. N., & Espeso, E. A. (2016). Proteolytic activation of both components of the cation stress–responsive Slt pathway in Aspergillus nidulans. Molecular Biology of the Cell, 27(16), 2598–2612. https://doi.org/10.1091/mbc.e16-01-0049
Sebastián-Pérez, V., Manoli, M.-T., Pérez, D. I., Gil, C., Mellado, E., Martínez, A., Espeso, E. A., & Campillo, N. E. (2016). New applications for known drugs: Human glycogen synthase kinase 3 inhibitors as modulators of Aspergillus fumigatus growth. European Journal of Medicinal Chemistry, 116, 281–289. https://doi.org/10.1016/j.ejmech.2016.03.035
Etxebeste, O., & Espeso, E. A. (2016). Neurons show the path: tip-to-nucleus communication in filamentous fungal development and pathogenesis. FEMS Microbiology Reviews, 40(5), 610–624. https://doi.org/10.1093/femsre/fuw021
Ries, L. N. A., Beattie, S. R., Espeso, E. A., Cramer, R. A., & Goldman, G. H. (2016). Diverse Regulation of the CreA Carbon Catabolite Repressor in Aspergillus nidulans. Genetics, 203(1), 335–352. https://doi.org/10.1534/genetics.116.187872
Dubey, A. K., Barad, S., Luria, N., Kumar, D., Espeso, E. A., & Prusky, D. B. (2016). Cation-Stress-Responsive Transcription Factors SltA and CrzA Regulate Morphogenetic Processes and Pathogenicity of Colletotrichum gloeosporioides. PLOS ONE, 11(12), e0168561. https://doi.org/10.1371/journal.pone.0168561
Bi, F., Barad, S., Ment, D., Luria, N., Dubey, A., Casado, V., Glam, N., Mínguez, J. D., Espeso, E. A., Fluhr, R., & Prusky, D. (2016). Carbon regulation of environmental pH by secreted small molecules that modulate pathogenicity in phytopathogenic fungi. Molecular Plant Pathology, 17(8), 1178–1195. Portico. https://doi.org/10.1111/mpp.12355
Oiartzabal-Arano, E., Perez-de-Nanclares-Arregi, E., Espeso, E. A., & Etxebeste, O. (2016). Apical control of conidiation in Aspergillus nidulans. Current Genetics, 62(2), 371–377. https://doi.org/10.1007/s00294-015-0556-0
Herrero‐Garcia, E., Perez‐de‐Nanclares‐Arregi, E., Cortese, M. S., Markina‐Iñarrairaegui, A., Oiartzabal‐Arano, E., Etxebeste, O., Ugalde, U., & Espeso, E. A. (2015). Tip‐to‐nucleus migration dynamics of the asexual development regulator FlbB in vegetative cells. Molecular Microbiology, 98(4), 607–624. Portico. https://doi.org/10.1111/mmi.13156
Ghassemi, S., Lichius, A., Bidard, F., Lemoine, S., Rossignol, M., Herold, S., Seidl‐Seiboth, V., Seiboth, B., Espeso, E. A., Margeot, A., & Kubicek, C. P. (2015). The ß‐importin KAP8 (Pse1/Kap121) is required for nuclear import of the cellulase transcriptional regulator XYR1, asexual sporulation and stress resistance in Trichoderma reesei. Molecular Microbiology, 96(2), 405–418. Portico. https://doi.org/10.1111/mmi.12944
Bussink, H., Bignell, E. M., Múnera‐Huertas, T., Lucena‐Agell, D., Scazzocchio, C., Espeso, E. A., Bertuzzi, M., Rudnicka, J., Negrete‐Urtasun, S., Peñas‐Parilla, M. M., Rainbow, L., Peñalva, M. Á., Arst, H. N., & Tilburn, J. (2015). Refining the pH response in Aspergillus nidulans: a modulatory triad involving PacX, a novel zinc binuclear cluster protein. Molecular Microbiology, 98(6), 1051–1072. Portico. https://doi.org/10.1111/mmi.13173
Bertuzzi, M., Schrettl, M., Alcazar-Fuoli, L., Cairns, T. C., Muñoz, A., Walker, L. A., Herbst, S., Safari, M., Cheverton, A. M., Chen, D., Liu, H., Saijo, S., Fedorova, N. D., Armstrong-James, D., Munro, C. A., Read, N. D., Filler, S. G., Espeso, E. A., Nierman, W. C., … Bignell, E. M. (2015). Correction: The pH-Responsive PacC Transcription Factor of Aspergillus fumigatus Governs Epithelial Entry and Tissue Invasion during Pulmonary Aspergillosis. PLOS Pathogens, 11(6), e1004943. https://doi.org/10.1371/journal.ppat.1004943
Baeza-Montañez, L., Gold, S. E., Espeso, E. A., & García-Pedrajas, M. D. (2015). Conserved and Distinct Functions of the “Stunted” (StuA)-Homolog Ust1 During Cell Differentiation in the Corn Smut Fungus Ustilago maydis. Molecular Plant-Microbe Interactions®, 28(1), 86–102. https://doi.org/10.1094/mpmi-07-14-0215-r
Oiartzabal-Arano, E., Garzia, A., Gorostidi, A., Ugalde, U., Espeso, E. A., & Etxebeste, O. (2015). Beyond Asexual Development: Modifications in the Gene Expression Profile Caused by the Absence of the Aspergillus nidulans Transcription Factor FlbB. Genetics, 199(4), 1127–1142. https://doi.org/10.1534/genetics.115.174342
Mellado, L., Calcagno-Pizarelli, A. M., Lockington, R. A., Cortese, M. S., Kelly, J. M., Arst, H. N., & Espeso, E. A. (2015). A second component of the SltA-dependent cation tolerance pathway in Aspergillus nidulans. Fungal Genetics and Biology, 82, 116–128. https://doi.org/10.1016/j.fgb.2015.06.002
Villarino, M., De Cal, A., Melgarejo, P., Larena, I., & Espeso, E. A. (2015). The development of genetic and molecular markers to register and commercialize Penicillium rubens (formerly Penicillium oxalicum) strain 212 as a biocontrol agent. Microbial Biotechnology, 9(1), 89–99. Portico. https://doi.org/10.1111/1751-7915.12325
Barad, S., Espeso, E. A., Sherman, A., & Prusky, D. (2015). Ammonia activates pacC and patulin accumulation in an acidic environment during apple colonization by Penicillium expansum. Molecular Plant Pathology, 17(5), 727–740. Portico. https://doi.org/10.1111/mpp.12327
Bertuzzi, M., Schrettl, M., Alcazar-Fuoli, L., Cairns, T. C., Muñoz, A., Walker, L. A., Herbst, S., Safari, M., Cheverton, A. M., Chen, D., Liu, H., Saijo, S., Fedorova, N. D., Armstrong-James, D., Munro, C. A., Read, N. D., Filler, S. G., Espeso, E. A., Nierman, W. C., … Bignell, E. M. (2014). The pH-Responsive PacC Transcription Factor of Aspergillus fumigatus Governs Epithelial Entry and Tissue Invasion during Pulmonary Aspergillosis. PLoS Pathogens, 10(10), e1004413. https://doi.org/10.1371/journal.ppat.1004413
Liu, W., Mellado, L., Espeso, E. A., & Sealy-Lewis, H. M. (2014). InAspergillus nidulansthe SuppressorssuaAandsuaCCode for Release Factors eRF1 and eRF3 andsuaDCodes for a Glutamine tRNA. G3 Genes|Genomes|Genetics, 4(6), 1047–1057. https://doi.org/10.1534/g3.114.010702
Alkan, N., Espeso, E. A., & Prusky, D. (2013). Virulence Regulation of Phytopathogenic Fungi by pH. Antioxidants & Redox Signaling, 19(9), 1012–1025. https://doi.org/10.1089/ars.2012.5062
Garzia, A., Etxebeste, O., Rodríguez-Romero, J., Fischer, R., Espeso, E. A., & Ugalde, U. (2013). Transcriptional Changes in the Transition from Vegetative Cells to Asexual Development in the Model Fungus Aspergillus nidulans. Eukaryotic Cell, 12(2), 311–321. https://doi.org/10.1128/ec.00274-12
Markina-Iñarrairaegui, A., Pantazopoulou, A., Espeso, E. A., & Peñalva, M. A. (2013). The Aspergillus nidulans Peripheral ER: Disorganization by ER Stress and Persistence during Mitosis. PLoS ONE, 8(6), e67154. https://doi.org/10.1371/journal.pone.0067154
Shantappa, S., Dhingra, S., Hernández-Ortiz, P., Espeso, E. A., & Calvo, A. M. (2013). Role of the Zinc Finger Transcription Factor SltA in Morphogenesis and Sterigmatocystin Biosynthesis in the Fungus Aspergillus nidulans. PLoS ONE, 8(7), e68492. https://doi.org/10.1371/journal.pone.0068492
Hernández‐Ortiz, P., & Espeso, E. A. (2013). Phospho‐regulation and nucleocytoplasmic trafficking of CrzA in response to calcium and alkaline‐pH stress in Aspergillus nidulans. Molecular Microbiology, 89(3), 532–551. Portico. https://doi.org/10.1111/mmi.12294
Etxebeste, O., Villarino, M., Markina-Iñarrairaegui, A., Araújo-Bazán, L., & Espeso, E. A. (2013). Cytoplasmic Dynamics of the General Nuclear Import Machinery in Apically Growing Syncytial Cells. PLoS ONE, 8(12), e85076. https://doi.org/10.1371/journal.pone.0085076
Etxebeste, O., Herrero-García, E., Cortese, M. S., Garzia, A., Oiartzabal-Arano, E., de los Ríos, V., Ugalde, U., & Espeso, E. A. (2012). GmcA Is a Putative Glucose-Methanol-Choline Oxidoreductase Required for the Induction of Asexual Development in Aspergillus nidulans. PLoS ONE, 7(7), e40292. https://doi.org/10.1371/journal.pone.0040292
Markina-Iñarrairaegui, A., Etxebeste, O., Herrero-García, E., Araújo-Bazán, L., Fernández-Martínez, J., Flores, J. A., Osmani, S. A., & Espeso, E. A. (2011). Nuclear transporters in a multinucleated organism: functional and localization analyses in Aspergillus nidulans. Molecular Biology of the Cell, 22(20), 3874–3886. https://doi.org/10.1091/mbc.e11-03-0262
Cortese, M. S., Etxebeste, O., Garzia, A., Espeso, E. A., & Ugalde, U. (2011). Elucidation of Functional Markers from Aspergillus nidulans Developmental Regulator FlbB and Their Phylogenetic Distribution. PLoS ONE, 6(3), e17505. https://doi.org/10.1371/journal.pone.0017505
Herrero-Garcia, E., Garzia, A., Cordobés, S., Espeso, E. A., & Ugalde, U. (2011). 8-Carbon oxylipins inhibit germination and growth, and stimulate aerial conidiation in Aspergillus nidulans. Fungal Biology, 115(4–5), 393–400. https://doi.org/10.1016/j.funbio.2011.02.005
Garzia, A., Etxebeste, O., Herrero‐García, E., Ugalde, U., & Espeso, E. A. (2010). The concerted action of bZip and cMyb transcription factors FlbB and FlbD induces brlA expression and asexual development in Aspergillus nidulans. Molecular Microbiology, 75(5), 1314–1324. Portico. https://doi.org/10.1111/j.1365-2958.2010.07063.x
Ruiz-Roldán, M. C., Köhli, M., Roncero, M. I. G., Philippsen, P., Di Pietro, A., & Espeso, E. A. (2010). Nuclear Dynamics during Germination, Conidiation, and Hyphal Fusion of Fusarium oxysporum. Eukaryotic Cell, 9(8), 1216–1224. https://doi.org/10.1128/ec.00040-10
Soriani, F. M., Malavazi, I., Savoldi, M., Espeso, E., Dinamarco, T. M., Bernardes, L. A., Ferreira, M. E., Goldman, M. H. S., & Goldman, G. H. (2010). Identification of possible targets of the Aspergillus fumigatus CRZ1 homologue, CrzA. BMC Microbiology, 10(1). https://doi.org/10.1186/1471-2180-10-12
Kwon, N.-J., Garzia, A., Espeso, E. A., Ugalde, U., & Yu, J.-H. (2010). FlbC is a putative nuclear C2H2 transcription factor regulating development in Aspergillus nidulans. Molecular Microbiology, 77(5), 1203–1219. https://doi.org/10.1111/j.1365-2958.2010.07282.x
Atoui, A., Kastner, C., Larey, C. M., Thokala, R., Etxebeste, O., Espeso, E. A., Fischer, R., & Calvo, A. M. (2010). Cross-talk between light and glucose regulation controls toxin production and morphogenesis in Aspergillus nidulans. Fungal Genetics and Biology, 47(12), 962–972. https://doi.org/10.1016/j.fgb.2010.08.007
Etxebeste, O., Garzia, A., Espeso, E. A., & Ugalde, U. (2010). Aspergillus nidulans asexual development: making the most of cellular modules. Trends in Microbiology, 18(12), 569–576. https://doi.org/10.1016/j.tim.2010.09.007
Findon, H., Calcagno-Pizarelli, A.-M., Martínez, J. L., Spielvogel, A., Markina-Iñarrairaegui, A., Indrakumar, T., Ramos, J., Peñalva, M. A., Espeso, E. A., & Arst, H. N. (2010). Analysis of a novel calcium auxotrophy in Aspergillus nidulans. Fungal Genetics and Biology, 47(7), 647–655. https://doi.org/10.1016/j.fgb.2010.04.002
Etxebeste, O., Ugalde, U., & A. Espeso, E. (2010). Adaptative and Developmental Responses to Stress in Aspergillus nidulans. Current Protein & Peptide Science, 11(8), 704–718. https://doi.org/10.2174/138920310794557682
Etxebeste, O., Herrero‐García, E., Araújo‐Bazán, L., Rodríguez‐Urra, A. B., Garzia, A., Ugalde, U., & Espeso, E. A. (2009). The bZIP‐type transcription factor FlbB regulates distinct morphogenetic stages of colony formation in Aspergillus nidulans. Molecular Microbiology, 73(5), 775–789. Portico. https://doi.org/10.1111/j.1365-2958.2009.06804.x
Wortman, J. R., Gilsenan, J. M., Joardar, V., Deegan, J., Clutterbuck, J., Andersen, M. R., Archer, D., Bencina, M., Braus, G., & Coutinho, P. (2009). The 2008 update of the Aspergillus nidulans genome annotation: A community effort. Fungal Genetics and Biology, 46(1), S2–S13. https://doi.org/10.1016/j.fgb.2008.12.003
Harris, S. D., Turner, G., Meyer, V., Espeso, E. A., Specht, T., Takeshita, N., & Helmstedt, K. (2009). Morphology and development in Aspergillus nidulans: A complex puzzle. Fungal Genetics and Biology, 46(1), S82–S92. https://doi.org/10.1016/j.fgb.2008.07.023
Etxebeste, O., Markina-Iñarrairaegui, A., Garzia, A., Herrero-García, E., Ugalde, U., & Espeso, E. A. (2009). KapI, a non-essential member of the Pse1p/Imp5 karyopherin family, controls colonial and asexual development in Aspergillus nidulans. Microbiology, 155(12), 3934–3945. https://doi.org/10.1099/mic.0.032615-0
Araújo-Bazán, L., Dhingra, S., Chu, J., Fernández-Martínez, J., Calvo, A. M., & Espeso, E. A. (2009). Importin α is an essential nuclear import carrier adaptor required for proper sexual and asexual development and secondary metabolism in Aspergillus nidulans. Fungal Genetics and Biology, 46(6–7), 506–515. https://doi.org/10.1016/j.fgb.2009.03.006
Spielvogel, A., Findon, H., Arst, H. N., Araújo-Bazán, L., Hernández-Ortíz, P., Stahl, U., Meyer, V., & Espeso, E. A. (2008). Two zinc finger transcription factors, CrzA and SltA, are involved in cation homoeostasis and detoxification in Aspergillus nidulans. Biochemical Journal, 414(3), 419–429. https://doi.org/10.1042/bj20080344
Taheri-Talesh, N., Horio, T., Araujo-Bazán, L., Dou, X., Espeso, E. A., Peñalva, M. A., Osmani, S. A., & Oakley, B. R. (2008). The Tip Growth Apparatus ofAspergillus nidulans. Molecular Biology of the Cell, 19(4), 1439–1449. https://doi.org/10.1091/mbc.e07-05-0464
Araujo‐Bazán, L., Peñalva, M. A., & Espeso, E. A. (2008). Preferential localization of the endocytic internalization machinery to hyphal tips underlies polarization of the actin cytoskeleton in Aspergillus nidulans. Molecular Microbiology, 67(4), 891–905. Portico. https://doi.org/10.1111/j.1365-2958.2007.06102.x
Araújo-Bazán, L., Fernández-Martínez, J., Ríos, V. M. de los, Etxebeste, O., Albar, J. P., Peñalva, M. Á., & Espeso, E. A. (2008). NapA and NapB are the Aspergillus nidulans Nap/SET family members and NapB is a nuclear protein specifically interacting with importin α. Fungal Genetics and Biology, 45(3), 278–291. https://doi.org/10.1016/j.fgb.2007.08.003
Purschwitz, J., Müller, S., Kastner, C., Schöser, M., Haas, H., Espeso, E. A., Atoui, A., Calvo, A. M., & Fischer, R. (2008). Functional and Physical Interaction of Blue- and Red-Light Sensors in Aspergillus nidulans. Current Biology, 18(4), 255–259. https://doi.org/10.1016/j.cub.2008.01.061
Etxebeste, O., Ni, M., Garzia, A., Kwon, N.-J., Fischer, R., Yu, J.-H., Espeso, E. A., & Ugalde, U. (2008). Basic-Zipper-Type Transcription Factor FlbB Controls Asexual Development in Aspergillus nidulans. Eukaryotic Cell, 7(1), 38–48. https://doi.org/10.1128/ec.00207-07
Garzia, A., Etxebeste, O., Herrero‐Garcia, E., Fischer, R., Espeso, E. A., & Ugalde, U. (2008). Aspergillus nidulans FlbE is an upstream developmental activator of conidiation functionally associated with the putative transcription factor FlbB. Molecular Microbiology, 71(1), 172–184. Portico. https://doi.org/10.1111/j.1365-2958.2008.06520.x
Bernreiter, A., Ramon, A., Fernández-Martínez, J., Berger, H., Araújo-Bazan, L., Espeso, E. A., Pachlinger, R., Gallmetzer, A., Anderl, I., Scazzocchio, C., & Strauss, J. (2007). Nuclear Export of the Transcription Factor NirA Is a Regulatory Checkpoint for Nitrate Induction in Aspergillus nidulans. Molecular and Cellular Biology, 27(3), 791–802. https://doi.org/10.1128/mcb.00761-06
Calcagno-Pizarelli, A. M., Negrete-Urtasun, S., Denison, S. H., Rudnicka, J. D., Bussink, H.-J., Múnera-Huertas, T., Stanton, L., Hervás-Aguilar, A., Espeso, E. A., Tilburn, J., Arst, H. N., & Peñalva, M. A. (2007). Establishment of the Ambient pH Signaling Complex in Aspergillus nidulans : PalI Assists Plasma Membrane Localization of PalH. Eukaryotic Cell, 6(12), 2365–2375. https://doi.org/10.1128/ec.00275-07
Stinnett, S. M., Espeso, E. A., Cobeño, L., Araújo‐Bazán, L., & Calvo, A. M. (2006). Aspergillus nidulans VeA subcellular localization is dependent on the importin α carrier and on light. Molecular Microbiology, 63(1), 242–255. Portico. https://doi.org/10.1111/j.1365-2958.2006.05506.x
Espeso, E. A., Cobeño, L., & Arst, H. N. (2005). Discrepancies Between Recombination Frequencies and Physical Distances in Aspergillus nidulans: Implications for Gene Identification. Genetics, 171(2), 835–838. https://doi.org/10.1534/genetics.105.044578
Caracuel, Z., Roncero, M. I. G., Espeso, E. A., González‐Verdejo, C. I., García‐Maceira, F. I., & Di Pietro, A. (2003). The pH signalling transcription factor PacC controls virulence in the plant pathogen Fusarium oxysporum. Molecular Microbiology, 48(3), 765–779. Portico. https://doi.org/10.1046/j.1365-2958.2003.03465.x
Fernández-Martı́nez, J., Brown, C. V., Dı́ez, E., Tilburn, J., Arst Jr, H. N., Peñalva, M. Á., & Espeso, E. A. (2003). Overlap of Nuclear Localisation Signal and Specific DNA-binding Residues Within the Zinc Finger Domain of PacC. Journal of Molecular Biology, 334(4), 667–684. https://doi.org/10.1016/j.jmb.2003.09.072
Mingot, J. M., Espeso, E. A., Dı́ez, E., & Peñalva, MiguelÁ. (2001). Ambient pH Signaling Regulates Nuclear Localization of the Aspergillus nidulans PacC Transcription Factor. Molecular and Cellular Biology, 21(5), 1688–1699. https://doi.org/10.1128/mcb.21.5.1688-1699.2001
Espeso, E. A., & Arst, H. N. (2000). On the Mechanism by which Alkaline pH Prevents Expression of an Acid-Expressed Gene. Molecular and Cellular Biology, 20(10), 3355–3363. https://doi.org/10.1128/mcb.20.10.3355-3363.2000
Espeso, E. A., Roncal, T., Díez, E., Rainbow, L., Bignell, E., Álvaro, J., Suárez, T., Denison, S. H., Tilburn, J., Arst, H. N., & Peñalva, M. A. (2000). On how a transcription factor can avoid its proteolytic activation in the absence of signal transduction. The EMBO Journal, 19(4), 719–728. https://doi.org/10.1093/emboj/19.4.719
Hutchings, H., Stahmann, K. ‐Peter, Roels, S., Espeso, E. A., Timberlake, W. E., Arst, Jr, H. N., & Tilburn, J. (1999). The multiply‐regulated gabA gene encoding the GABA permease of Aspergillus nidulans: a score of exons. Molecular Microbiology, 32(3), 557–568. Portico. https://doi.org/10.1046/j.1365-2958.1999.01371.x
Negrete‐Urtasun, S., Reiter, W., Diez, E., Denison, S. H., Tilburn, J., Espeso, E. A., Peñalva, M. A., & Arst, H. N. (1999). Ambient pH signal transduction in Aspergillus: completion of gene characterization. Molecular Microbiology, 34(5), 1149–1149. Portico. https://doi.org/10.1046/j.1365-2958.1999.01693.x
Reoyo, E., Espeso, E. A., Peñalva, M. A., & Suárez, T. (1998). The EssentialAspergillus nidulansGenepmaAEncodes an Homologue of Fungal Plasma Membrane H+-ATPases. Fungal Genetics and Biology, 23(3), 288–299. https://doi.org/10.1006/fgbi.1998.1039
Denison, S. H., Negrete‐Urtasun, S., Mingot, J. M., Tilburn, J., Mayer, W. A., Goel, A., Espeso, E. A., Peñalva, M. A., & Arst Jr, H. N. (1998). Putative membrane components of signal transduction pathways for ambient pH regulation in Aspergillus and meiosis in Saccharomyces are homologous. Molecular Microbiology, 30(2), 259–264. Portico. https://doi.org/10.1046/j.1365-2958.1998.01058.x
Espeso, E. A., Tilburn, J., Sánchez-Pulido, L., Brown, C. V., Valencia, A., Arst, H. N., & Peñalva, M. A. (1997). Specific DNA recognition by the Aspergillus nidulans three zinc finger transcription factor PacC. Journal of Molecular Biology, 274(4), 466–480. https://doi.org/10.1006/jmbi.1997.1428
Espeso, E. A., & Peñalva, M. A. (1996). Three Binding Sites for the Aspergillus nidulans PacC Zinc-finger Transcription Factor Are Necessary and Sufficient for Regulation by Ambient pH of the Isopenicillin N Synthase Gene Promoter. Journal of Biological Chemistry, 271(46), 28825–28830. https://doi.org/10.1074/jbc.271.46.28825
Espeso, E. A., Fernández-cañón, J., & Peñalva, M. A. (1995). Carbon regulation of penicillin biosynthesis inAspergillus nidulans: A minor effect of mutations increBandcreC. FEMS Microbiology Letters, 126(1), 63–67. https://doi.org/10.1111/j.1574-6968.1995.tb07391.x
Orejas, M., Espeso, E. A., Tilburn, J., Sarkar, S., Arst, H. N., & Peñalva, M. A. (1995). Activation of the Aspergillus PacC transcription factor in response to alkaline ambient pH requires proteolysis of the carboxy-terminal moiety. Genes & Development, 9(13), 1622–1632. https://doi.org/10.1101/gad.9.13.1622
Espeso, E. A., & Peñalva, M. A. (1994). In vitro binding of the two‐finger repressor CreA to several consensus and non‐consensus sites at the ipnA upstream region is context dependent. FEBS Letters, 342(1), 43–48. Portico. https://doi.org/10.1016/0014-5793(94)80581-4
Pe�alva, M. A., Espeso, E., P�rez-Esteban, B., Orejas, M., Fern�ndez-Ca��n, J. M., & Mart�nez-Blanco, H. (1993). Expression of fungal genes involved in penicllin biosynthesis. World Journal of Microbiology and Biotechnology, 9(4), 461–467. https://doi.org/10.1007/bf00328034
Espeso, E. A., & Peñalva, M. A. (1992). Carbon catabolite repression can account for the temporal pattern of expression of a penicillin biosynthetic gene in Aspergillus nidulans. Molecular Microbiology, 6(11), 1457–1465. Portico. https://doi.org/10.1111/j.1365-2958.1992.tb00866.x
Research lines:
Funding:
- Towards the global comprehension of the fungal cell; Knowledge for human welfare. PID2021-124278OB-I00: Grant PID2021-124278OB-I00 funded by MCIN/AEI/ 10.13039/501100011033 and by “ERDF A way of making Europe”.. National Funding. 01/09/2022-31/01/2026.
