View Profile
Institution: CINN
Research Groups: Computational Biochemistry of Membrane Receptors
Position: Group Leader
Home page: https://cinn.es/investigacion/epigenetica_nanomedicina/bioquimica-computacional/
Contact email: h.g.teran@cinn.es
BCB Committee: Talent attraction and training, Support BCB Excellence
BCB Community: Bioinformatics tools, benchmarks and data visualization, Structural biology and molecular simulation
BCB Tools:
BCB Services:
Research topics: Computational Methods, Applications of Computational Biology, Drug Discovery and design, Computational models and simulations, Biomolecular simulation, Structural bioinformatics, Molecular Interactions/Docking, Mutation Analysis and design, Structure prediction, Bioinformatics Software and Tools, Analysis packages (R, Python, etc.), Web-service, Workflow managers
Biography: Hugo Gutiérrez de Terán is a Senior Scientist at the Spanish National Research Council (CSIC) and Professor of Computational Biochemistry at Uppsala University. He holds a Pharmacy degree from the University of Santiago de Compostela (USC, 1999) and a PhD in Molecular Modelling and Computer-Aided Drug Design from Pompeu Fabra University (2004). After postdoctoral work in Uppsala University on computational methods for antimalarial drug development, he established his own research group in Galicia (USC and Public Galician Foundation of Genomic Medicine), initiating his current focus on mechanistic studies and modulation through ligand optimization of G protein–coupled receptors (GPCRs). He later spent a sabbatical at The Scripps Research Institute with Prof. Raymond C. Stevens, conducting pioneering studies on GPCR allosteric modulation. He moved to Uppsala in 2012, he advanced to Full Professor in 2024, combining research, teaching, and technology transfer, including co-founding a company in computer-aided drug design. In November 2024, he joined CSIC as Staff Scientist / Associate professor of the Research Center of NAnometerials and Nanomedicine (CINN), and returned to Spain to establish the Computational Biochemistry and Structural Bioinformatics Laboratory at ISPA (Health Research Institute of Principality of Asturias) in Oviedo.
Publications
Tandarić, T., & Gutiérrez-de-Terán, H. (2025). Ligand and Residue Free Energy Perturbations Solve the Dual Binding Mode Proposal for an A2BAR Partial Agonist. The Journal of Physical Chemistry B, 129(3), 886–899. https://doi.org/10.1021/acs.jpcb.4c07391
Conflitti, P., Lyman, E., Sansom, M. S. P., Hildebrand, P. W., Gutiérrez-de-Terán, H., Carloni, P., Ansell, T. B., Yuan, S., Barth, P., Robinson, A. S., Tate, C. G., Gloriam, D., Grzesiek, S., Eddy, M. T., Prosser, S., & Limongelli, V. (2025). Functional dynamics of G protein-coupled receptors reveal new routes for drug discovery. Nature Reviews Drug Discovery, 24(4), 251–275. https://doi.org/10.1038/s41573-024-01083-3
Anazia, K., Koenekoop, L., Ferré, G., Petracco, E., Gutiérrez-de-Terán, H., & Eddy, M. T. (2024). Interaction networks within disease-associated GαS variants characterized by an integrative biophysical approach. Journal of Biological Chemistry, 300(8), 107497. https://doi.org/10.1016/j.jbc.2024.107497
van den Broek, R. L., Bello, X., Küpper, R. V., van Westen, G. J. P., Jespers, W., & Gutiérrez-de-Terán, H. (2024). Memprot.GPCR-ModSim: modelling and simulation of membrane proteins in a nutshell. Bioinformatics, 40(11). https://doi.org/10.1093/bioinformatics/btae662
Mallo-Abreu, A., Reyes-Resina, I., Azuaje, J., Franco, R., García-Rey, A., Majellaro, M., Miranda-Pastoriza, D., García-Mera, X., Jespers, W., Gutiérrez-de-Terán, H., Navarro, G., & Sotelo, E. (2021). Potent and Subtype-Selective Dopamine D2 Receptor Biased Partial Agonists Discovered via an Ugi-Based Approach. Journal of Medicinal Chemistry, 64(12), 8710–8726. https://doi.org/10.1021/acs.jmedchem.1c00704
Bongers, B. J., González, M. G., Wang, X., van Vlijmen, H. W. T., Jespers, W., Gutiérrez-de-Terán, H., Ye, K., IJzerman, A. P., Heitman, L. H., & van Westen, G. J. P. (2021). Pan-cancer in silico analysis of somatic mutations in G-protein coupled receptors: The effect of evolutionary conservation and natural variance. https://doi.org/10.1101/2021.10.25.465693
Jespers, W., Heitman, L. H., IJzerman, A. P., Sotelo, E., van Westen, G. J. P., Åqvist, J., & Gutiérrez-de-Terán, H. (2021). Deciphering conformational selectivity in the A2A adenosine G protein-coupled receptor by free energy simulations. PLOS Computational Biology, 17(11), e1009152. https://doi.org/10.1371/journal.pcbi.1009152
Ge, X., Oliveira, A., Hjort, K., Bergfors, T., Gutiérrez-de-Terán, H., Andersson, D. I., Sanyal, S., & Åqvist, J. (2020). Author Correction: Inhibition of translation termination by small molecules targeting ribosomal release factors. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-62010-1
Vasile, S., Hallberg, A., Sallander, J., Hallberg, M., Åqvist, J., & Gutiérrez-de-Terán, H. (2020). Evolution of Angiotensin Peptides and Peptidomimetics as Angiotensin II Receptor Type 2 (AT2) Receptor Agonists. Biomolecules, 10(4), 649. https://doi.org/10.3390/biom10040649
Jespers, W., Verdon, G., Azuaje, J., Majellaro, M., Keränen, H., García‐Mera, X., Congreve, M., Deflorian, F., de Graaf, C., Zhukov, A., Doré, A. S., Mason, J. S., Åqvist, J., Cooke, R. M., Sotelo, E., & Gutiérrez‐de‐Terán, H. (2020). X‐Ray Crystallography and Free Energy Calculations Reveal the Binding Mechanism of A2A Adenosine Receptor Antagonists. Angewandte Chemie International Edition, 59(38), 16536–16543. Portico. https://doi.org/10.1002/anie.202003788
Isaksson, R., Lindman, J., Wannberg, J., Sallander, J., Backlund, M., Baraldi, D., Widdop, R., Hallberg, M., Åqvist, J., Gutierrez de Teran, H., Gising, J., & Larhed, M. (2019). A Series of Analogues to the AT2R Prototype Antagonist C38 Allow Fine Tuning of the Previously Reported Antagonist Binding Mode. ChemistryOpen, 8(1), 114–125. Portico. https://doi.org/10.1002/open.201800282
Lind, C., Esguerra, M., Jespers, W., Satpati, P., Gutierrez-de-Terán, H., & Åqvist, J. (2019). Free energy calculations of RNA interactions. Methods, 162–163, 85–95. https://doi.org/10.1016/j.ymeth.2019.02.014
Jandova, Z., Jespers, W., Sotelo, E., Gutiérrez-de-Terán, H., & Oostenbrink, C. (2019). Free-Energy Calculations for Bioisosteric Modifications of A3 Adenosine Receptor Antagonists. International Journal of Molecular Sciences, 20(14), 3499. https://doi.org/10.3390/ijms20143499
Shebanits, K., Vasile, S., Xu, B., Gutiérrez-de-Terán, H., & Larhammar, D. (2019). Functional characterization in vitro of twelve naturally occurring variants of the human pancreatic polypeptide receptor NPY4R. Neuropeptides, 76, 101933. https://doi.org/10.1016/j.npep.2019.05.004
Jespers, W., Isaksen, G. V., Andberg, T. A. H., Vasile, S., van Veen, A., Åqvist, J., Brandsdal, B. O., & Gutiérrez-de-Terán, H. (2019). QresFEP: An Automated Protocol for Free Energy Calculations of Protein Mutations in Q. Journal of Chemical Theory and Computation, 15(10), 5461–5473. https://doi.org/10.1021/acs.jctc.9b00538
Mallo-Abreu, A., Majellaro, M., Jespers, W., Azuaje, J., Caamaño, O., García-Mera, X., Brea, J. M., Loza, M. I., Gutiérrez-de-Terán, H., & Sotelo, E. (2019). Trifluorinated Pyrimidine-Based A2B Antagonists: Optimization and Evidence of Stereospecific Recognition. Journal of Medicinal Chemistry, 62(20), 9315–9330. https://doi.org/10.1021/acs.jmedchem.9b01340
Ge, X., Oliveira, A., Hjort, K., Bergfors, T., Gutiérrez-de-Terán, H., Andersson, D. I., Sanyal, S., & Åqvist, J. (2019). Inhibition of translation termination by small molecules targeting ribosomal release factors. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-51977-1
Jespers, W., Esguerra, M., Åqvist, J., & Gutiérrez-de-Terán, H. (2019). QligFEP: an automated workflow for small molecule free energy calculations in Q. Journal of Cheminformatics, 11(1). https://doi.org/10.1186/s13321-019-0348-5
Jespers, W., Schiedel, A. C., Heitman, L. H., Cooke, R. M., Kleene, L., van Westen, G. J. P., Gloriam, D. E., Müller, C. E., Sotelo, E., & Gutiérrez-de-Terán, H. (2018). Structural Mapping of Adenosine Receptor Mutations: Ligand Binding and Signaling Mechanisms. Trends in Pharmacological Sciences, 39(1), 75–89. https://doi.org/10.1016/j.tips.2017.11.001
Shamsudin, Y., Gutiérrez-de-Terán, H., & Åqvist, J. (2018). Molecular Mechanisms in the Selectivity of Nonsteroidal Anti-Inflammatory Drugs. Biochemistry, 57(7), 1236–1248. https://doi.org/10.1021/acs.biochem.7b01019
Vanga, S. R., Sävmarker, J., Ng, L., Larhed, M., Hallberg, M., Åqvist, J., Hallberg, A., Chai, S. Y., & Gutiérrez-de-Terán, H. (2018). Structural Basis of Inhibition of Human Insulin-Regulated Aminopeptidase (IRAP) by Aryl Sulfonamides. ACS Omega, 3(4), 4509–4521. https://doi.org/10.1021/acsomega.8b00595
Crespo, A., El Maatougui, A., Azuaje, J., Escalante, L., Majellaro, M., Loza, M. I., Brea, J., Cadavid, M. I., Gutiérrez-de-Terán, H., & Sotelo, E. (2017). Exploring the influence of the substituent at position 4 in a series of 3,4-dihydropyrimidin-2(1H)-one A2B adenosine receptor antagonists. Chemistry of Heterocyclic Compounds, 53(3), 316–321. https://doi.org/10.1007/s10593-017-2054-4
Nøhr, A. C., Jespers, W., Shehata, M. A., Floryan, L., Isberg, V., Andersen, K. B., Åqvist, J., Gutiérrez-de-Terán, H., Bräuner-Osborne, H., & Gloriam, D. E. (2017). The GPR139 reference agonists 1a and 7c, and tryptophan and phenylalanine share a common binding site. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-01049-z
Azuaje, J., Jespers, W., Yaziji, V., Mallo, A., Majellaro, M., Caamaño, O., Loza, M. I., Cadavid, M. I., Brea, J., Åqvist, J., Sotelo, E., & Gutiérrez-de-Terán, H. (2017). Effect of Nitrogen Atom Substitution in A3Adenosine Receptor Binding:N-(4,6-Diarylpyridin-2-yl)acetamides as Potent and Selective Antagonists. Journal of Medicinal Chemistry, 60(17), 7502–7511. https://doi.org/10.1021/acs.jmedchem.7b00860
Jespers, W., Oliveira, A., Prieto-Díaz, R., Majellaro, M., Åqvist, J., Sotelo, E., & Gutiérrez-de-Terán, H. (2017). Structure-Based Design of Potent and Selective Ligands at the Four Adenosine Receptors. Molecules, 22(11), 1945. https://doi.org/10.3390/molecules22111945
Vasile, S., Esguerra, M., Jespers, W., Oliveira, A., Sallander, J., Åqvist, J., & Gutiérrez-de-Terán, H. (2017). Characterization of Ligand Binding to GPCRs Through Computational Methods. Computational Methods for GPCR Drug Discovery, 23–44. https://doi.org/10.1007/978-1-4939-7465-8_2
Diwakarla, S., Nylander, E., Grönbladh, A., Vanga, S. R., Shamsudin, Y., Gutiérrez-de-Terán, H., Sävmarker, J., Ng, L., Pham, V., Lundbäck, T., Jenmalm-Jensen, A., Svensson, R., Artursson, P., Zelleroth, S., Engen, K., Rosenström, U., Larhed, M., Åqvist, J., Chai, S. Y., & Hallberg, M. (2016). Aryl Sulfonamide Inhibitors of Insulin-Regulated Aminopeptidase Enhance Spine Density in Primary Hippocampal Neuron Cultures. ACS Chemical Neuroscience, 7(10), 1383–1392. https://doi.org/10.1021/acschemneuro.6b00146
Esguerra, M., Siretskiy, A., Bello, X., Sallander, J., & Gutiérrez-de-Terán, H. (2016). GPCR-ModSim: A comprehensive web based solution for modeling G-protein coupled receptors. Nucleic Acids Research, 44(W1), W455–W462. https://doi.org/10.1093/nar/gkw403
Rodríguez, A., Guerrero, A., Gutierrez-de-Terán, H., Rodríguez, D., Brea, J., Loza, M. I., Rosell, G., & Pilar Bosch, M. (2015). New selective A2Aagonists and A3antagonists for human adenosine receptors: synthesis, biological activity and molecular docking studies. MedChemComm, 6(6), 1178–1185. https://doi.org/10.1039/c5md00086f
Yaziji, V., Rodríguez, D., Coelho, A., García-Mera, X., El Maatougui, A., Brea, J., Loza, M. I., Cadavid, M. I., Gutiérrez-de-Terán, H., & Sotelo, E. (2013). Selective and potent adenosine A3 receptor antagonists by methoxyaryl substitution on the N-(2,6-diarylpyrimidin-4-yl)acetamide scaffold. European Journal of Medicinal Chemistry, 59, 235–242. https://doi.org/10.1016/j.ejmech.2012.11.010
Rodriguez, D., & Gutierrez-de-Teran, H. (2013). Computational Approaches for Ligand Discovery and Design in Class-A G Protein- Coupled Receptors. Current Pharmaceutical Design, 19(12), 2216–2236. https://doi.org/10.2174/1381612811319120009
Gutiérrez-de-Terán, H., Bello, X., & Rodríguez, D. (2013). Characterization of the dynamic events of GPCRs by automated computational simulations. Biochemical Society Transactions, 41(1), 205–212. https://doi.org/10.1042/bst20120287
Rodríguez, D., Bello, X., & Gutiérrez‐de‐Terán, H. (2012). Molecular Modelling of G Protein‐Coupled Receptors Through the Web. Molecular Informatics, 31(5), 334–341. Portico. https://doi.org/10.1002/minf.201100162
Rodríguez, D., & Gutiérrez‐de‐Terán, H. (2012). Characterization of the homodimerization interface and functional hotspots of the CXCR4 chemokine receptor. Proteins: Structure, Function, and Bioinformatics, 80(8), 1919–1928. Portico. https://doi.org/10.1002/prot.24099
Pazos, E., Pérez, M., Gutiérrez-de-Terán, H., Orzáez, M., Guevara, T., Mascareñas, J. L., & Vázquez, M. E. (2011). Rational design of a cyclin A fluorescent peptide sensor. Organic & Biomolecular Chemistry, 9(22), 7629. https://doi.org/10.1039/c1ob06009k
Rodríguez, D., Piñeiro, Á., & Gutiérrez-de-Terán, H. (2011). Molecular Dynamics Simulations Reveal Insights into Key Structural Elements of Adenosine Receptors. Biochemistry, 50(19), 4194–4208. https://doi.org/10.1021/bi200100t
Fällmar, H., Åkerberg, H., Gutiérrez-de-Terán, H., Lundell, I., Mohell, N., & Larhammar, D. (2011). Identification of positions in the human neuropeptide Y/peptide YY receptor Y2 that contribute to pharmacological differences between receptor subtypes. Neuropeptides, 45(4), 293–300. https://doi.org/10.1016/j.npep.2011.05.006
Díaz, L., Bujons, J., Delgado, A., Gutiérrez-de-Terán, H., & Åqvist, J. (2011). Computational Prediction of Structure−Activity Relationships for the Binding of Aminocyclitols to β-Glucocerebrosidase. Journal of Chemical Information and Modeling, 51(3), 601–611. https://doi.org/10.1021/ci100453a
Gutiérrez-de-Terán, H., & Åqvist, J. (2011). Linear Interaction Energy: Method and Applications in Drug Design. Computational Drug Discovery and Design, 305–323. https://doi.org/10.1007/978-1-61779-465-0_20
Varin, T., Gutiérrez‐de‐Terán, H., Castro, M., Brea, J., Fabis, F., Dauphin, F., Åqvist, J., Lepailleur, A., Perez, P., Burgueño, J., Vela, J. M., Loza, M. I., & Rodrigo, J. (2010). Phe369(7.38) at human 5‐HT7receptors confers interspecies selectivity to antagonists and partial agonists. British Journal of Pharmacology, 159(5), 1069–1081. Portico. https://doi.org/10.1111/j.1476-5381.2009.00481.x
Åkerberg, H., Fällmar, H., Sjödin, P., Boukharta, L., Gutiérrez-de-Terán, H., Lundell, I., Mohell, N., & Larhammar, D. (2010). Mutagenesis of human neuropeptide Y/peptide YY receptor Y2 reveals additional differences to Y1 in interactions with highly conserved ligand positions. Regulatory Peptides, 163(1–3), 120–129. https://doi.org/10.1016/j.regpep.2010.04.011
Areias, F. M., Brea, J., Gregori-Puigjané, E., Zaki, M. E. A., Carvalho, M. A., Domínguez, E., Gutiérrez-de-Terán, H., Proença, M. F., Loza, M. I., & Mestres, J. (2010). In silico directed chemical probing of the adenosine receptor family. Bioorganic & Medicinal Chemistry, 18(9), 3043–3052. https://doi.org/10.1016/j.bmc.2010.03.048
Rodríguez-Rodríguez, C., Rimola, A., Rodríguez-Santiago, L., Ugliengo, P., Álvarez-Larena, Á., Gutiérrez-de-Terán, H., Sodupe, M., & González-Duarte, P. (2010). Crystal structure of thioflavin-T and its binding to amyloid fibrils: insights at the molecular level. Chemical Communications, 46(7), 1156. https://doi.org/10.1039/b912396b
Yaziji, V., Rodríguez, D., Gutiérrez-de-Terán, H., Coelho, A., Caamaño, O., García-Mera, X., Brea, J., Loza, M. I., Cadavid, M. I., & Sotelo, E. (2010). Pyrimidine Derivatives as Potent and Selective A3Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 54(2), 457–471. https://doi.org/10.1021/jm100843z
Orrling, K. M., Marzahn, M. R., Gutiérrez-de-Terán, H., Åqvist, J., Dunn, B. M., & Larhed, M. (2009). α-Substituted norstatines as the transition-state mimic in inhibitors of multiple digestive vacuole malaria aspartic proteases. Bioorganic & Medicinal Chemistry, 17(16), 5933–5949. https://doi.org/10.1016/j.bmc.2009.06.065
Gutiérrez‐de‐Terán, H., Correia, C., Rodríguez, D., Carvalho, M. A., Brea, J., Cadavid, M. I., Loza, M. I., Proença, M. F., & Areias, F. (2009). Identification of Novel Scaffolds from an Original Chemical Library as Potential Antipsychotics. QSAR & Combinatorial Science, 28(8), 856–860. Portico. https://doi.org/10.1002/qsar.200860198
Michino, M., Abola, E., Brooks, C. L., Dixon, J. S., Moult, J., & Stevens, R. C. (2009). Community-wide assessment of GPCR structure modelling and ligand docking: GPCR Dock 2008. Nature Reviews Drug Discovery, 8(6), 455–463. https://doi.org/10.1038/nrd2877
Blanco-Arias, P., Einholm, A. P., Mamsa, H., Concheiro, C., Gutierrez-de-Teran, H., Romero, J., Toustrup-Jensen, M. S., Carracedo, A., Jen, J. C., Vilsen, B., & Sobrido, M.-J. (2009). A C-terminal mutation of ATP1A3 underscores the crucial role of sodium affinity in the pathophysiology of rapid-onset dystonia-parkinsonism. Human Molecular Genetics, 18(13), 2370–2377. https://doi.org/10.1093/hmg/ddp170
Martínez, A., Gutiérrez-de-Terán, H., Brea, J., Raviña, E., Loza, M. I., Cadavid, M. I., Sanz, F., Vidal, B., Segarra, V., & Sotelo, E. (2008). Synthesis, adenosine receptor binding and 3D-QSAR of 4-substituted 2-(2′-furyl)-1,2,4-triazolo[1,5-a]quinoxalines. Bioorganic & Medicinal Chemistry, 16(4), 2103–2113. https://doi.org/10.1016/j.bmc.2007.10.103
Bjelic, S., Nervall, M., Gutiérrez-de-Terán, H., Ersmark, K., Hallberg, A., & Åqvist, J. (2007). Computational inhibitor design against malaria plasmepsins. Cellular and Molecular Life Sciences, 64(17), 2285–2305. https://doi.org/10.1007/s00018-007-7102-2
Gutiérrez-de-Terán, H., Nervall, M., Ersmark, K., Liu, P., Janka, L. K., Dunn, B., Hallberg, A., & Åqvist, J. (2006). Inhibitor Binding to the Plasmepsin IV Aspartic Protease from Plasmodium falciparum. Biochemistry, 45(35), 10529–10541. https://doi.org/10.1021/bi0609669
Gutiérrez-de-Terán, H., Nervall, M., Dunn, B. M., Clemente, J. C., & Åqvist, J. (2006). Computational analysis of plasmepsin IV bound to an allophenylnorstatine inhibitor. FEBS Letters, 580(25), 5910–5916. Portico. https://doi.org/10.1016/j.febslet.2006.09.057
Barbany, M., Terán, H. G., Sanz, F., & Villà‐Freixa, J. (2004). Towards a MIP‐based alignment and docking in computer‐aided drug design. Proteins: Structure, Function, and Bioinformatics, 56(3), 585–594. Portico. https://doi.org/10.1002/prot.20153
Gutiérrez‐de‐Terán, H., Centeno, N. B., Pastor, M., & Sanz, F. (2004). Novel approaches for modeling of the A1 adenosine receptor and its agonist binding site. Proteins: Structure, Function, and Bioinformatics, 54(4), 705–715. Portico. https://doi.org/10.1002/prot.10617
Gutiérrez‐de‐Terán, H., Pastor, M., Centeno, N. B., Åqvist, J., & Sanz, F. (2004). Comparative Analysis of Putative Agonist‐Binding Modes in the Human A1 Adenosine Receptor. ChemBioChem, 5(6), 841–849. Portico. https://doi.org/10.1002/cbic.200300817
Fontaine, F., Pastor, M., Gutiérrez-de-Terán, H., Lozano, J. J., & Sanz, F. (2003). Use of alignment-free molecular descriptors in diversity analysis and optimal sampling of molecular libraries. Molecular Diversity, 6(2), 135–147. https://doi.org/10.1023/b:modi.0000006840.89805.e1
Barbany, M., Gutiérrez‐de‐Terán, H., Sanz, F., Villà‐Freixa, J., & Warshel, A. (2003). On the Generation of Catalytic Antibodies by Transition State Analogues. ChemBioChem, 4(4), 277–285. Portico. https://doi.org/10.1002/cbic.200390048
Gutierrez-de-Teran, H., Lozano, J., Segarra, V., & Sanz, F. (2002). Molecular Diversity Sample Generation on the Basis of Quantum-Mechanical Computations and Principal Component Analysis. Combinatorial Chemistry & High Throughput Screening, 5(1), 49–57. https://doi.org/10.2174/1386207023330543
Rodrigo, J., Barbany, M., Gutiérrez-de-Terán, H., Centeno, N. B., de-Càceres, M., Dezi, C., Fontaine, F., Lozano, J. J., Pastor, M., Villà, J., & Sanz, F. (2002). Comparison of biomolecules on the basis of Molecular Interaction Potentials. Journal of the Brazilian Chemical Society, 13(6), 795–799. https://doi.org/10.1590/s0103-50532002000600010
Error fetching reference data.
Error fetching reference data.
Research lines:
- Development of novel polypharmacology-based cancer immunotherapy strategies targeting the purinergic signalling pathway
- Predictive models for precision modulation of G protein–coupled receptors (GPCRs): allosteric modulators and biassed agonists
- New methods to elucidate molecular effects of mutations on protein structure and function
Funding:
- Adenosine Receptors in Immune-Oncology: Agencia Estatal de Investigación - Ministerio de Ciencia y Universidades. National. 01/09/2024 - 31/08/2027.
More info
Spin-off: Modsim Pharma (https://modsim-pharma.com/)
Participation in:
Master Programs: MSc on Civil engineering on Molecular Biotechnology (Uppsala University, Sweden)
Doctoral Programs: Programa de Doctorado en Biomedicina y Oncología Molecular (Universidad de Oviedo)
National Research Networks: RER (Red de Enfermedades Raras) - CSIC
International Research Networks: iGPCRnet (International Research Network on GPCRs)
