Institution: I2SYSBIO
Research Groups: Dynamics Biodesing Lab
Position: PTU, Científico visitante
Contact email: pablo.carbonell@csic.es
Biography: Pablo Carbonell is Principal Investigator at the Institute of Integrative Systems Biology I2SysBio (UV/CSIC) former senior reader at the ai2 institute, Polytechnic University of Valencia (UPV). Pablo Carbonell leads the Dynamics BioDesign Lab (DBDL) group (https://carbonelllab.org), co-leads the Microbial Biotechnology group of ELIXIR and is member of the working group of the Global Biofoundries Alliance (GBA). Previously, he was a senior scientist at the SYNBIOCHEM Biofoundry at the University of Manchester.
Pablo Carbonell's research focuses on developing innovative tools and strategies to automate and optimize biomanufacturing processes. The research employs a biofoundry approach that automates the Design-Build-Test-Learn (DBTL) cycle to accelerate the development of producer strains for bio-based compounds. We work on customized research solutions to identify novel enzymes for biocatalysis, optimize strains for fermentation processes, and develop innovative biosensors.
Publications
Tellechea-Luzardo, J., Martin Lazaro, H., Fernandez Perez, C., Henriques, D., Otero-Muras, I., & Carbonell, P. (2025). Context-Aware Biosensor Design Through Biology-Guided Machine Learning and Dynamical Modeling. ACS Synthetic Biology, 14(6), 2094–2104. https://doi.org/10.1021/acssynbio.4c00894
Martín Lázaro, H., Marín Bautista, R., & Carbonell, P. (2024). DetSpace: a web server for engineering detectable pathways for bio-based chemical production. Nucleic Acids Research, 52(W1), W476–W480. https://doi.org/10.1093/nar/gkae287
Stoney, R. A., Hanko, E. K. R., Carbonell, P., & Breitling, R. (2023). SelenzymeRF: updated enzyme suggestion software for unbalanced biochemical reactions. Computational and Structural Biotechnology Journal, 21, 5868–5876. https://doi.org/10.1016/j.csbj.2023.11.039
Tellechea-Luzardo, J., Stiebritz, M. T., & Carbonell, P. (2023). Transcription factor-based biosensors for screening and dynamic regulation. Frontiers in Bioengineering and Biotechnology, 11. https://doi.org/10.3389/fbioe.2023.1118702
Sidorova, J., Carbonell, P., & Čukić, M. (2022). Blood Glucose Estimation From Voice: First Review of Successes and Challenges. Journal of Voice, 36(5), 737.e1-737.e10. https://doi.org/10.1016/j.jvoice.2020.08.034
Hérisson, J., Duigou, T., du Lac, M., Bazi-Kabbaj, K., Azad, M. S., Buldum, G., Telle, O., El-Moubayed, Y., Carbonell, P., Swainston, N., Zulkower, V., Kushwaha, M., Baldwin, G. S., & Faulon, J.-L. (2022). Galaxy-SynBioCAD: Automated Pipeline for Synthetic Biology Design and Engineering. https://doi.org/10.1101/2022.02.23.481618
Tellechea-Luzardo, J., Otero-Muras, I., Goñi-Moreno, A., & Carbonell, P. (2022). Fast biofoundries: coping with the challenges of biomanufacturing. Trends in Biotechnology, 40(7), 831–842. https://doi.org/10.1016/j.tibtech.2021.12.006
Tellechea-Luzardo, J., Moreno López, R., & Carbonell, P. (2022). Sensbio: An online server for biosensor design. https://doi.org/10.1101/2022.07.28.501596
Hérisson, J., Duigou, T., du Lac, M., Bazi-Kabbaj, K., Sabeti Azad, M., Buldum, G., Telle, O., El Moubayed, Y., Carbonell, P., Swainston, N., Zulkower, V., Kushwaha, M., Baldwin, G. S., & Faulon, J.-L. (2022). The automated Galaxy-SynBioCAD pipeline for synthetic biology design and engineering. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-32661-x
Otero-Muras, I., & Carbonell, P. (2021). Automated engineering of synthetic metabolic pathways for efficient biomanufacturing. Metabolic Engineering, 63, 61–80. https://doi.org/10.1016/j.ymben.2020.11.012
Yeoh, J. W., Swainston, N., Vegh, P., Zulkower, V., Carbonell, P., Holowko, M. B., Peddinti, G., & Poh, C. L. (2021). SynBiopython: an open-source software library for Synthetic Biology. Synthetic Biology, 6(1). https://doi.org/10.1093/synbio/ysab001
Robinson, C. J., Tellechea-Luzardo, J., Carbonell, P., Jervis, A. J., Yan, C., Hollywood, K. A., Dunstan, M. S., Currin, A., Takano, E., & Scrutton, N. S. (2021). Prototyping of microbial chassis for the biomanufacturing of high-value chemical targets. Biochemical Society Transactions, 49(3), 1055–1063. https://doi.org/10.1042/bst20200017
Camarena, M., & Carbonell, P. (2021). Developing an enzyme selection tool supporting multiple hosts contexts. https://doi.org/10.1101/2021.09.09.459461
Carbonell, P., Le Feuvre, R., Takano, E., & Scrutton, N. S. (2020). In silico design and automated learning to boost next-generation smart biomanufacturing. Synthetic Biology, 5(1). https://doi.org/10.1093/synbio/ysaa020
Robinson, C. J., Carbonell, P., Jervis, A. J., Yan, C., Hollywood, K. A., Dunstan, M. S., Currin, A., Swainston, N., Spiess, R., Taylor, S., Mulherin, P., Parker, S., Rowe, W., Matthews, N. E., Malone, K. J., Le Feuvre, R., Shapira, P., Barran, P., Turner, N. J., … Scrutton, N. S. (2020). Rapid prototyping of microbial production strains for the biomanufacture of potential materials monomers. Metabolic Engineering, 60, 168–182. https://doi.org/10.1016/j.ymben.2020.04.008
Boada, Y., Vignoni, A., Picó, J., & Carbonell, P. (2020). Extended Metabolic Biosensor Design for Dynamic Pathway Regulation of Cell Factories. IScience, 23(7), 101305. https://doi.org/10.1016/j.isci.2020.101305
Dunstan, M. S., Robinson, C. J., Jervis, A. J., Yan, C., Carbonell, P., Hollywood, K. A., Currin, A., Swainston, N., Feuvre, R. L., Micklefield, J., Faulon, J.-L., Breitling, R., Turner, N., Takano, E., & Scrutton, N. S. (2020). Engineering Escherichia coli towards de novo production of gatekeeper (2S)-flavanones: naringenin, pinocembrin, eriodictyol and homoeriodictyol. Synthetic Biology, 5(1). https://doi.org/10.1093/synbio/ysaa012
Kurgan, G., Kurgan, L., Schneider, A., Onyeabor, M., Rodriguez-Sanchez, Y., Taylor, E., Martinez, R., Carbonell, P., Shi, X., Gu, H., & Wang, X. (2019). Identification of major malate export systems in an engineered malate-producing Escherichia coli aided by substrate similarity search. Applied Microbiology and Biotechnology, 103(21–22), 9001–9011. https://doi.org/10.1007/s00253-019-10164-y
Currin, A., Swainston, N., Dunstan, M. S., Jervis, A. J., Mulherin, P., Robinson, C. J., Taylor, S., Carbonell, P., Hollywood, K. A., Yan, C., Takano, E., Scrutton, N. S., & Breitling, R. (2019). Highly multiplexed, fast and accurate nanopore sequencing for verification of synthetic DNA constructs and sequence libraries. Synthetic Biology, 4(1). https://doi.org/10.1093/synbio/ysz025
Jervis, A. J., Carbonell, P., Taylor, S., Sung, R., Dunstan, M. S., Robinson, C. J., Breitling, R., Takano, E., & Scrutton, N. S. (2019). SelProm: A Queryable and Predictive Expression Vector Selection Tool for Escherichia coli. ACS Synthetic Biology, 8(7), 1478–1483. https://doi.org/10.1021/acssynbio.8b00399
Carbonell, P., Radivojevic, T., & García Martín, H. (2019). Opportunities at the Intersection of Synthetic Biology, Machine Learning, and Automation. ACS Synthetic Biology, 8(7), 1474–1477. https://doi.org/10.1021/acssynbio.8b00540
Grozinger, L., Amos, M., Gorochowski, T. E., Carbonell, P., Oyarzún, D. A., Stoof, R., Fellermann, H., Zuliani, P., Tas, H., & Goñi-Moreno, A. (2019). Pathways to cellular supremacy in biocomputing. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-13232-z
Carbonell, P., Faulon, J.-L., & Breitling, R. (2019). Efficient learning in metabolic pathway designs through optimal assembling. IFAC-PapersOnLine, 52(26), 7–12. https://doi.org/10.1016/j.ifacol.2019.12.228
López-Massaguer, O., Pastor, M., Sanz, F., & Carbonell, P. (2018). Hepatotoxicity Prediction by Systems Biology Modeling of Disturbed Metabolic Pathways Using Gene Expression Data. Computational Toxicology, 505–518. https://doi.org/10.1007/978-1-4939-7899-1_23
Delépine, B., Duigou, T., Carbonell, P., & Faulon, J.-L. (2018). RetroPath2.0: A retrosynthesis workflow for metabolic engineers. Metabolic Engineering, 45, 158–170. https://doi.org/10.1016/j.ymben.2017.12.002
Carbonell, P., Wong, J., Swainston, N., Takano, E., Turner, N. J., Scrutton, N. S., Kell, D. B., Breitling, R., & Faulon, J.-L. (2018). Selenzyme: enzyme selection tool for pathway design. Bioinformatics, 34(12), 2153–2154. https://doi.org/10.1093/bioinformatics/bty065
Carbonell, P., Delépine, B., & Faulon, J.-L. (2018). Extended Metabolic Space Modeling. Synthetic Metabolic Pathways, 83–96. https://doi.org/10.1007/978-1-4939-7295-1_6
Carbonell, P., Jervis, A. J., Robinson, C. J., Yan, C., Dunstan, M., Swainston, N., Vinaixa, M., Hollywood, K. A., Currin, A., Rattray, N. J. W., Taylor, S., Spiess, R., Sung, R., Williams, A. R., Fellows, D., Stanford, N. J., Mulherin, P., Le Feuvre, R., Barran, P., … Scrutton, N. S. (2018). An automated Design-Build-Test-Learn pipeline for enhanced microbial production of fine chemicals. Communications Biology, 1(1). https://doi.org/10.1038/s42003-018-0076-9
Carbonell, P., Koch, M., Duigou, T., & Faulon, J.-L. (2018). Enzyme Discovery: Enzyme Selection and Pathway Design. Enzymes in Synthetic Biology, 3–27. https://doi.org/10.1016/bs.mie.2018.04.005
Duigou, T., du Lac, M., Carbonell, P., & Faulon, J.-L. (2018). RetroRules: a database of reaction rules for engineering biology. Nucleic Acids Research, 47(D1), D1229–D1235. https://doi.org/10.1093/nar/gky940
Jervis, A. J., Carbonell, P., Vinaixa, M., Dunstan, M. S., Hollywood, K. A., Robinson, C. J., Rattray, N. J. W., Yan, C., Swainston, N., Currin, A., Sung, R., Toogood, H., Taylor, S., Faulon, J.-L., Breitling, R., Takano, E., & Scrutton, N. S. (2018). Machine Learning of Designed Translational Control Allows Predictive Pathway Optimization in Escherichia coli. ACS Synthetic Biology, 8(1), 127–136. https://doi.org/10.1021/acssynbio.8b00398
Swainston, N., Batista-Navarro, R., Carbonell, P., Dobson, P. D., Dunstan, M., Jervis, A. J., Vinaixa, M., Williams, A. R., Ananiadou, S., Faulon, J.-L., Mendes, P., Kell, D. B., Scrutton, N. S., & Breitling, R. (2017). biochem4j: Integrated and extensible biochemical knowledge through graph databases. PLOS ONE, 12(7), e0179130. https://doi.org/10.1371/journal.pone.0179130
Swainston, N., Dunstan, M., Jervis, A. J., Robinson, C. J., Carbonell, P., Williams, A. R., Faulon, J.-L., Scrutton, N. S., & Kell, D. B. (2017). PartsGenie: an integrated tool for optimising and sharing synthetic biology parts. https://doi.org/10.1101/189357
Koch, M., Duigou, T., Carbonell, P., & Faulon, J.-L. (2017). Molecular structures enumeration and virtual screening in the chemical space with RetroPath2.0. Journal of Cheminformatics, 9(1). https://doi.org/10.1186/s13321-017-0252-9
Delépine, B., Libis, V., Carbonell, P., & Faulon, J.-L. (2016). SensiPath: computer-aided design of sensing-enabling metabolic pathways. Nucleic Acids Research, 44(W1), W226–W231. https://doi.org/10.1093/nar/gkw305
Mellor, J., Grigoras, I., Carbonell, P., & Faulon, J.-L. (2016). Semisupervised Gaussian Process for Automated Enzyme Search. ACS Synthetic Biology, 5(6), 518–528. https://doi.org/10.1021/acssynbio.5b00294
Carbonell, P., Currin, A., Jervis, A. J., Rattray, N. J. W., Swainston, N., Yan, C., Takano, E., & Breitling, R. (2016). Bioinformatics for the synthetic biology of natural products: integrating across the Design–Build–Test cycle. Natural Product Reports, 33(8), 925–932. https://doi.org/10.1039/c6np00018e
Carbonell, P., Currin, A., Dunstan, M., Fellows, D., Jervis, A., Rattray, N. J. W., Robinson, C. J., Swainston, N., Vinaixa, M., Williams, A., Yan, C., Barran, P., Breitling, R., Chen, G. G.-Q., Faulon, J.-L., Goble, C., Goodacre, R., Kell, D. B., Feuvre, R. L., … Turner, N. J. (2016). SYNBIOCHEM–a SynBio foundry for the biosynthesis and sustainable production of fine and speciality chemicals. Biochemical Society Transactions, 44(3), 675–677. https://doi.org/10.1042/bst20160009
Carbonell, P., Gök, A., Shapira, P., & Faulon, J. (2016). Mapping the patent landscape of synthetic biology for fine chemical production pathways. Microbial Biotechnology, 9(5), 687–695. Portico. https://doi.org/10.1111/1751-7915.12401
RA, L. F., P, C., A, C., M, D., D, F., AJ, J., NJW, R., CJ, R., N, S., M, V., A, W., C, Y., P, B., R, B., GG, C., JL, F., C, G., R, G., DB, K., … NJ, T. (2016). SYNBIOCHEM Synthetic Biology Research Centre, Manchester – A UK foundry for fine and speciality chemicals production. Synthetic and Systems Biotechnology, 1(4), 271–275. https://doi.org/10.1016/j.synbio.2016.07.001
Trosset, J.-Y., & Carbonell, P. (2015). Synthetic biology for pharmaceutical drug discovery. Drug Design, Development and Therapy, 6285. https://doi.org/10.2147/dddt.s58049
Martiny, V. Y., Carbonell, P., Chevillard, F., Moroy, G., Nicot, A. B., Vayer, P., Villoutreix, B. O., & Miteva, M. A. (2015). Integrated structure- and ligand-basedin silicoapproach to predict inhibition of cytochrome P450 2D6. Bioinformatics, 31(24), 3930–3937. https://doi.org/10.1093/bioinformatics/btv486
Ceroni, F., Carbonell, P., François, J.-M., & Haynes, K. A. (2015). Editorial – Synthetic Biology: Engineering Complexity and Refactoring Cell Capabilities. Frontiers in Bioengineering and Biotechnology, 3. https://doi.org/10.3389/fbioe.2015.00120
Fehér, T., Libis, V., Carbonell, P., & Faulon, J.-L. (2015). A Sense of Balance: Experimental Investigation and Modeling of a Malonyl-CoA Sensor in Escherichia coli. Frontiers in Bioengineering and Biotechnology, 3. https://doi.org/10.3389/fbioe.2015.00046
Carbonell, P., Parutto, P., Herisson, J., Pandit, S. B., & Faulon, J.-L. (2014). XTMS: pathway design in an eXTended metabolic space. Nucleic Acids Research, 42(W1), W389–W394. https://doi.org/10.1093/nar/gku362
Delépine, B., Carbonell, P., & Faulon, J.-L. (2014). XTMS in Action: Retrosynthetic Design in the Extended Metabolic Space of Heterologous Pathways for High-Value Compounds. Computational Methods in Systems Biology, 256–259. https://doi.org/10.1007/978-3-319-12982-2_21
Carbonell, P., & Trosset, J.-Y. (2014). Overcoming drug resistance through in silico prediction. Drug Discovery Today: Technologies, 11, 101–107. https://doi.org/10.1016/j.ddtec.2014.03.012
Fernández-Castané, A., Fehér, T., Carbonell, P., Pauthenier, C., & Faulon, J.-L. (2014). Computer-aided design for metabolic engineering. Journal of Biotechnology, 192, 302–313. https://doi.org/10.1016/j.jbiotec.2014.03.029
Fehér, T., Planson, A., Carbonell, P., Fernández‐Castané, A., Grigoras, I., Dariy, E., Perret, A., & Faulon, J. (2014). Validation of RetroPath, a computer‐aided design tool for metabolic pathway engineering. Biotechnology Journal, 9(11), 1446–1457. Portico. https://doi.org/10.1002/biot.201400055
Carbonell, P., & Trosset, J.-Y. (2014). Computational Protein Design Methods for Synthetic Biology. Computational Methods in Synthetic Biology, 3–21. https://doi.org/10.1007/978-1-4939-1878-2_1
Carbonell, P., Carlsson, L., & Faulon, J.-L. (2013). Stereo Signature Molecular Descriptor. Journal of Chemical Information and Modeling, 53(4), 887–897. https://doi.org/10.1021/ci300584r
Carbonell, P., Planson, A.-G., & Faulon, J.-L. (2013). Retrosynthetic Design of Heterologous Pathways. Systems Metabolic Engineering, 149–173. https://doi.org/10.1007/978-1-62703-299-5_9
Martiny, V. Y., Carbonell, P., Lagorce, D., Villoutreix, B. O., Moroy, G., & Miteva, M. A. (2013). In Silico Mechanistic Profiling to Probe Small Molecule Binding to Sulfotransferases. PLoS ONE, 8(9), e73587. https://doi.org/10.1371/journal.pone.0073587
Xu, S. S.-D., Ying, H., Carbonell, P., Lee, C.-H., & Wu, W.-S. (2013). Fuzzy Logic Applications in Control Theory and Systems Biology. Advances in Fuzzy Systems, 2013, 1–1. https://doi.org/10.1155/2013/504728
Carbonell, P., Parutto, P., Baudier, C., Junot, C., & Faulon, J.-L. (2013). Retropath: Automated Pipeline for Embedded Metabolic Circuits. ACS Synthetic Biology, 3(8), 565–577. https://doi.org/10.1021/sb4001273
Carbonell, P., Fichera, D., Pandit, S. B., & Faulon, J.-L. (2012). Enumerating metabolic pathways for the production of heterologous target chemicals in chassis organisms. BMC Systems Biology, 6(1). https://doi.org/10.1186/1752-0509-6-10
Carbonell, P., Lecointre, G., & Faulon, J.-L. (2011). Origins of Specificity and Promiscuity in Metabolic Networks. Journal of Biological Chemistry, 286(51), 43994–44004. https://doi.org/10.1074/jbc.m111.274050
Planson, A., Carbonell, P., Grigoras, I., & Faulon, J. (2011). Engineering antibiotic production and overcoming bacterial resistance. Biotechnology Journal, 6(7), 812–825. Portico. https://doi.org/10.1002/biot.201100085
Carbonell, P., Planson, A.-G., Fichera, D., & Faulon, J.-L. (2011). A retrosynthetic biology approach to metabolic pathway design for therapeutic production. BMC Systems Biology, 5(1). https://doi.org/10.1186/1752-0509-5-122
Planson, A., Carbonell, P., Paillard, E., Pollet, N., & Faulon, J. (2011). Compound toxicity screening and structure–activity relationship modeling in Escherichia coli. Biotechnology and Bioengineering, 109(3), 846–850. Portico. https://doi.org/10.1002/bit.24356
Faulon, J.-L., & Bender, A. (2010). Handbook of Chemoinformatics Algorithms. Chapman and Hall/CRC. https://doi.org/10.1201/9781420082999
Carbonell, P., & Faulon, J.-L. (2010). Molecular signatures-based prediction of enzyme promiscuity. Bioinformatics, 26(16), 2012–2019. https://doi.org/10.1093/bioinformatics/btq317
Carbonell, P., & Sol, A. del. (2009). Methyl side-chain dynamics prediction based on protein structure. Bioinformatics, 25(19), 2552–2558. https://doi.org/10.1093/bioinformatics/btp463
Carbonell, P., Nussinov, R., & del Sol, A. (2009). Energetic determinants of protein binding specificity: Insights into protein interaction networks. PROTEOMICS, 9(7), 1744–1753. Portico. https://doi.org/10.1002/pmic.200800425
del Sol, A., & Carbonell, P. (2007). The Modular Organization of Domain Structures: Insights into Protein–Protein Binding. PLoS Computational Biology, 3(12), e239. https://doi.org/10.1371/journal.pcbi.0030239
Colinge, J., Masselot, A., Carbonell, P., & Appel, R. D. (2006). InSilicoSpectro: An Open-Source Proteomics Library. Journal of Proteome Research, 5(3), 619–624. https://doi.org/10.1021/pr0504236
Carbonell, P., Jiang, Z.-P., & Panwar, S. (2002). FUZZY TCP: A PRELIMINARY STUDY. IFAC Proceedings Volumes, 35(1), 205–210. https://doi.org/10.3182/20020721-6-es-1901.00687
Error fetching reference data.
Research lines:
There are no lines of investigation associated with this user.
