Institution: IIBM
Research Groups: Bioinformatics and Computational Biology in Cancer Evolution
Position: University Professor (Catedrático de Universidad)
Home page: https://ligarto.org/rdiaz
Contact email: r.diaz@uam.es
BCB Committee: No committees assigned.
BCB Community: No communities assigned.
BCB Tools: Tnasas, SignS, Pomelo2, GeneSrF, EvAM-Tools
BCB Services: No services assigned.
Research topics: Applications of Computational Biology, Computational models and simulations, Evolutionary modelling, Phylogenetic Analysis, Data Analysis, Artificial Intelligence, Deep Learning in Biology, Large language models, Machine Learning in Biology, Statistical Methods for Biology, Benchmarking, Bioinformatics Software and Tools, Analysis packages (R, Python, etc.), Web-service, Computational Techniques, Containers Computing, High-performance Computing, Parallel Computing
Publications
Renz, J., Dauda, K. A., Aga, O. N. L., Diaz-Uriarte, R., Löhr, I. H., Blomberg, B., & Johnston, I. G. (2025). Evolutionary accumulation modeling in AMR: machine learning to infer and predict evolutionary dynamics of multi-drug resistance. MBio, 16(6). https://doi.org/10.1128/mbio.00488-25
Renz, J., Dauda, K. A., Aga, O. N. L., Diaz-Uriarte, R., Löhr, I. H., Blomberg, B., & Johnston, I. G. (2024). Evolutionary accumulation modelling in AMR: machine learning to infer and predict evolutionary dynamics of multi-drug resistance (Version 2). arXiv. https://doi.org/10.48550/ARXIV.2411.00219
Aga, O. N. L., Brun, M., Dauda, K. A., Diaz-Uriarte, R., Giannakis, K., & Johnston, I. G. (2024). HyperTraPS-CT: Inference and prediction for accumulation pathways with flexible data and model structures. https://doi.org/10.1101/2024.03.07.583841
Johnston, I. G., & Diaz-Uriarte, R. (2024). A hypercubic Mk model framework for capturing reversibility in disease, cancer, and evolutionary accumulation modelling. https://doi.org/10.1101/2024.06.27.600959
Diaz-Uriarte, R., & Johnston, I. G. (2023). A picture guide to cancer progression and monotonic accumulation models: evolutionary assumptions, plausible interpretations, and alternative uses. ArXiv. https://doi.org/10.48550/ARXIV.2312.06824
Diaz-Colunga, J., Skwara, A., Gowda, K., Diaz-Uriarte, R., Tikhonov, M., Bajic, D., & Sanchez, A. (2023). Global epistasis on fitness landscapes. Philosophical Transactions of the Royal Society B: Biological Sciences, 378(1877). https://doi.org/10.1098/rstb.2022.0053
Fontaneda, D., & Diaz-Uriarte, R. (2023). Adaptive therapy in cancer: the role of restrictions in the accumulation of mutations. https://doi.org/10.1101/2023.05.18.541330
Diaz-Uriarte, R., & Herrera-Nieto, P. (2022). EvAM-Tools: tools for evolutionary accumulation and cancer progression models. https://doi.org/10.1101/2022.07.05.498481
Diaz-Uriarte, R., Gómez de Lope, E., Giugno, R., Fröhlich, H., Nazarov, P. V., Nepomuceno-Chamorro, I. A., Rauschenberger, A., & Glaab, E. (2022). Ten quick tips for biomarker discovery and validation analyses using machine learning. PLOS Computational Biology, 18(8), e1010357. https://doi.org/10.1371/journal.pcbi.1010357
Manrubia, S., Cuesta, J. A., Aguirre, J., Ahnert, S. E., Altenberg, L., Cano, A. V., Catalán, P., Diaz-Uriarte, R., Elena, S. F., García-Martín, J. A., Hogeweg, P., Khatri, B. S., Krug, J., Louis, A. A., Martin, N. S., Payne, J. L., Tarnowski, M. J., & Weiß, M. (2022). The long and winding road to understanding organismal construction. Physics of Life Reviews, 42, 19–24. https://doi.org/10.1016/j.plrev.2022.05.007
Diaz-Uriarte, R. (2021). Simulating Evolution in Asexual Populations with Epistasis. Epistasis, 121–154. https://doi.org/10.1007/978-1-0716-0947-7_9
Manrubia, S., Cuesta, J. A., Aguirre, J., Ahnert, S. E., Altenberg, L., Cano, A. V., Catalán, P., Diaz-Uriarte, R., Elena, S. F., García-Martín, J. A., Hogeweg, P., Khatri, B. S., Krug, J., Louis, A. A., Martin, N. S., Payne, J. L., Tarnowski, M. J., & Weiß, M. (2020). From genotypes to organisms: State-of-the-art and perspectives of a cornerstone in evolutionary dynamics. ArXiv. https://doi.org/10.48550/ARXIV.2002.00363
Diaz-Colunga, J., & Diaz-Uriarte, R. (2020). Conditional prediction of consecutive tumor evolution using cancer progression models: What genotype comes next? https://doi.org/10.1101/2020.12.16.423099
Hosseini, S.-R., Diaz-Uriarte, R., Markowetz, F., & Beerenwinkel, N. (2019). Estimating the predictability of cancer evolution. Bioinformatics, 35(14), i389–i397. https://doi.org/10.1093/bioinformatics/btz332
Diaz-Uriarte, R., & Vasallo, C. (2018). Every which way? On predicting tumor evolution using cancer progression models. https://doi.org/10.1101/371039
Diaz-Uriarte, R. (2017). Cancer progression models and fitness landscapes: a many-to-many relationship. https://doi.org/10.1101/141465
Diaz-Uriarte, R. (2017). OncoSimulR: genetic simulation with arbitrary epistasis and mutator genes in asexual populations. Bioinformatics, 33(12), 1898–1899. https://doi.org/10.1093/bioinformatics/btx077
Diaz-Uriarte, R. (2016). OncoSimulR: genetic simulation of cancer progression with arbitrary epistasis and mutator genes. https://doi.org/10.1101/069500
Moneo, V., Serelde, B. G., Blanco-Aparicio, C., Diaz-Uriarte, R., Avilés, P., Santamaría, G., Tercero, J. C., Cuevas, C., & Carnero, A. (2014). Levels of active tyrosine kinase receptor determine the tumor response to Zalypsis. BMC Cancer, 14(1). https://doi.org/10.1186/1471-2407-14-281
Fernandez‐Navarro, P., González‐Neira, A., Pita, G., Díaz‐Uriarte, R., Tais Moreno, L., Ederra, M., Pedraz‐Pingarrón, C., Sánchez‐Contador, C., Vázquez‐Carrete, J. A., Moreo, P., Vidal, C., Salas‐Trejo, D., Stone, J., Southey, M. C., Hopper, J. L., Pérez‐Gómez, B., Benitez, J., & Pollan, M. (2014). Genome wide association study identifies a novel putative mammographic density locus at 1q12‐q21. International Journal of Cancer, 136(10), 2427–2436. Portico. https://doi.org/10.1002/ijc.29299
Diaz-Uriarte, R. (2014). Identifying Restrictions in the Order of Accumulation of Mutations during Tumor Progression: Effects of Passengers, Evolutionary Models, and Sampling. https://doi.org/10.1101/005587
Diaz-Uriarte, R. (2014). ADaCGH2: parallelized analysis of (big) CNA data. Bioinformatics, 30(12), 1759–1761. https://doi.org/10.1093/bioinformatics/btu099
Rueda, O. M., Diaz-Uriarte, R., & Caldas, C. (2013). Finding Common Regions of Alteration in Copy Number Data. Array Comparative Genomic Hybridization, 339–353. https://doi.org/10.1007/978-1-62703-281-0_21
Rueda, O. M., Rueda, C., & Diaz-Uriarte, R. (2013). A Bayesian HMM with random effects and an unknown number of states for DNA copy number analysis. Journal of Statistical Computation and Simulation, 83(1), 82–96. https://doi.org/10.1080/00949655.2011.609818
Landa, I., Boullosa, C., Inglada-Pérez, L., Sastre-Perona, A., Pastor, S., Velázquez, A., Mancikova, V., Ruiz-Llorente, S., Schiavi, F., Marcos, R., Malats, N., Opocher, G., Diaz-Uriarte, R., Santisteban, P., Valencia, A., & Robledo, M. (2013). An Epistatic Interaction between the PAX8 and STK17B Genes in Papillary Thyroid Cancer Susceptibility. PLoS ONE, 8(9), e74765. https://doi.org/10.1371/journal.pone.0074765
Landa, I., Boullosa, C., Inglada-Pérez, L., Sastre-Perona, A., Pastor, S., Velázquez, A., Mancikova, V., Ruiz-Llorente, S., Schiavi, F., Marcos, R., Malats, N., Opocher, G., Diaz-Uriarte, R., Santisteban, P., Valencia, A., & Robledo, M. (2013). Correction: An Epistatic Interaction between the PAX8 and STK17B Genes in Papillary Thyroid Cancer Susceptibility. PLoS ONE, 8(10). https://doi.org/10.1371/annotation/cd94c3eb-70f2-4dfa-85be-b3fc41e495c3
Barderas, R., Babel, I., Díaz-Uriarte, R., Moreno, V., Suárez, A., Bonilla, F., Villar-Vázquez, R., Capellá, G., & Casal, J. I. (2012). An optimized predictor panel for colorectal cancer diagnosis based on the combination of tumor-associated antigens obtained from protein and phage microarrays. Journal of Proteomics, 75(15), 4647–4655. https://doi.org/10.1016/j.jprot.2012.03.004
Babel, I., Barderas, R., Diaz-Uriarte, R., Moreno, V., Suarez, A., Fernandez-Aceñero, M. J., Salazar, R., Capellá, G., & Casal, J. I. (2011). Identification of MST1/STK4 and SULF1 Proteins as Autoantibody Targets for the Diagnosis of Colorectal Cancer by Using Phage Microarrays. Molecular & Cellular Proteomics, 10(3), M110.001784. https://doi.org/10.1074/mcp.m110.001784
Subirana, I., Diaz-Uriarte, R., Lucas, G., & Gonzalez, J. R. (2011). CNVassoc: Association analysis of CNV data using R. BMC Medical Genomics, 4(1). https://doi.org/10.1186/1755-8794-4-47
Montes-Moreno, S., Martinez, N., Sanchez-Espiridión, B., Díaz Uriarte, R., Rodriguez, M. E., Saez, A., Montalbán, C., Gomez, G., Pisano, D. G., García, J. F., Conde, E., Gonzalez-Barca, E., Lopez, A., Mollejo, M., Grande, C., Martinez, M. A., Dunphy, C., Hsi, E. D., Rocque, G. B., … Piris, M. A. (2011). miRNA expression in diffuse large B-cell lymphoma treated with chemoimmunotherapy. Blood, 118(4), 1034–1040. https://doi.org/10.1182/blood-2010-11-321554
Rico, D., Earl, J., Diaz-Uriarte, R., Rueda, O. M., Marenne, G., & Pita, G. (2010). Genomic copy number alterations in cancer: high-resolution analysis of the NCI-60 panel. New Biotechnology, 27, S81. https://doi.org/10.1016/j.nbt.2010.01.228
Moneo, V., Diaz-Uriarte, R., Serelde, B., Blanco-Aparicio, C., Aviles, P., Gema, S., Tercero, J. C., Cuevas, C., & Carnero, A. (2010). Abstract 1685: Identification of PDGFR-a as a predictive biomarker for response to Zalypsis®. Cancer Research, 70(8_Supplement), 1685–1685. https://doi.org/10.1158/1538-7445.am10-1685
Carro, A., Rico, D., Rueda, O. M., D�az-Uriarte, R., & Pisano, D. G. (2010). waviCGH: a web application for the analysis and visualization of genomic copy number alterations. Nucleic Acids Research, 38(suppl_2), W182–W187. https://doi.org/10.1093/nar/gkq441
Fuxjager, M. J., Foufopoulos, J., Diaz‐Uriarte, R., & Marler, C. A. (2010). Functionally opposing effects of testosterone on two different types of parasite: implications for the immunocompetence handicap hypothesis. Functional Ecology, 25(1), 132–138. Portico. https://doi.org/10.1111/j.1365-2435.2010.01784.x
Sequeira-Mendes, J., Díaz-Uriarte, R., Apedaile, A., Huntley, D., Brockdorff, N., & Gómez, M. (2009). Transcription Initiation Activity Sets Replication Origin Efficiency in Mammalian Cells. PLoS Genetics, 5(4), e1000446. https://doi.org/10.1371/journal.pgen.1000446
Morrissey, E. R., & Diaz-Uriarte, R. (2009). Pomelo II: finding differentially expressed genes. Nucleic Acids Research, 37(Web Server), W581–W586. https://doi.org/10.1093/nar/gkp366
Rueda, O. M., & Diaz-Uriarte, R. (2009). RJaCGH: Bayesian analysis of aCGH arrays for detecting copy number changes and recurrent regions. Bioinformatics, 25(15), 1959–1960. https://doi.org/10.1093/bioinformatics/btp307
Babel, I., Barderas, R., Díaz-Uriarte, R., Martínez-Torrecuadrada, J. L., Sánchez-Carbayo, M., & Casal, J. I. (2009). Identification of Tumor-associated Autoantigens for the Diagnosis of Colorectal Cancer in Serum Using High Density Protein Microarrays. Molecular & Cellular Proteomics, 8(10), 2382–2395. https://doi.org/10.1074/mcp.m800596-mcp200
Diaz-Uriarte, R. (2008). SignS: a parallelized, open-source, freely available, web-based tool for gene selection and molecular signatures for survival and censored data. BMC Bioinformatics, 9(1). https://doi.org/10.1186/1471-2105-9-30
Alibes, A., Canada, A., & Diaz-Uriarte, R. (2008). PaLS: filtering common literature, biological terms and pathway information. Nucleic Acids Research, 36(Web Server), W364–W367. https://doi.org/10.1093/nar/gkn251
Urdinguio, R. G., Lopez-Serra, L., Lopez-Nieva, P., Alaminos, M., Diaz-Uriarte, R., Fernandez, A. F., & Esteller, M. (2008). Mecp2-Null Mice Provide New Neuronal Targets for Rett Syndrome. PLoS ONE, 3(11), e3669. https://doi.org/10.1371/journal.pone.0003669
Diaz-Uriarte, R. (2007). GeneSrF and varSelRF: a web-based tool and R package for gene selection and classification using random forest. BMC Bioinformatics, 8(1). https://doi.org/10.1186/1471-2105-8-328
Rueda, O. M., & Díaz-Uriarte, R. (2007). Flexible and Accurate Detection of Genomic Copy-Number Changes from aCGH. PLoS Computational Biology, 3(6), e122. https://doi.org/10.1371/journal.pcbi.0030122
Rueda, O. M., & Diaz-Uriarte, R. (2007). A response to Yu et al. “A forward-backward fragment assembling algorithm for the identification of genomic amplification and deletion breakpoints using high-density single nucleotide polymorphism (SNP) array”, BMC Bioinformatics 2007, 8: 145. BMC Bioinformatics, 8(1). https://doi.org/10.1186/1471-2105-8-394
Moneo, V., Serelde, B. G., Leal, J. F. M., Blanco-Aparicio, C., Diaz-Uriarte, R., Aracil, M., Tercero, J. C., Jimeno, J., & Carnero, A. (2007). Levels of p27kip1 determine Aplidin sensitivity. Molecular Cancer Therapeutics, 6(4), 1310–1316. https://doi.org/10.1158/1535-7163.mct-06-0729
Diaz-Uriarte, R., Alibes, A., Morrissey, E. R., Canada, A., Rueda, O. M., & Neves, M. L. (2007). Asterias: integrated analysis of expression and aCGH data using an open-source, web-based, parallelized software suite. Nucleic Acids Research, 35(Web Server), W75–W80. https://doi.org/10.1093/nar/gkm229
Rodríguez, A., Villuendas, R., Yáñez, L., Gómez, M. E., Díaz, R., Pollán, M., Hernández, N., de la Cueva, P., Marín, M. C., Swat, A., Ruiz, E., Cuadrado, M. A., Conde, E., Lombardía, L., Cifuentes, F., Gonzalez, M., García-Marco, J. A., & Piris, M. A. (2007). Molecular heterogeneity in chronic lymphocytic leukemia is dependent on BCR signaling: clinical correlation. Leukemia, 21(9), 1984–1991. https://doi.org/10.1038/sj.leu.2404831
Díaz-Uriarte, R., & Rueda, O. M. (2007). ADaCGH: A Parallelized Web-Based Application and R Package for the Analysis of aCGH Data. PLoS ONE, 2(8), e737. https://doi.org/10.1371/journal.pone.0000737
Collado, M., Garcia, V., Garcia, J. M., Alonso, I., Lombardia, L., Diaz-Uriarte, R., López Fernández, L. A., Zaballos, A., Bonilla, F., & Serrano, M. (2007). Genomic Profiling of Circulating Plasma RNA for the Analysis of Cancer. Clinical Chemistry, 53(10), 1860–1863. https://doi.org/10.1373/clinchem.2007.089201
Díaz‐Uriarte, R. (2005). Supervised Methods with Genomic Data: a Review and Cautionary View. Data Analysis and Visualization in Genomics and Proteomics, 193–214. Portico. https://doi.org/10.1002/0470094419.ch12
Al-Shahrour, F., Diaz-Uriarte, R., & Dopazo, J. (2005). Discovering molecular functions significantly related to phenotypes by combining gene expression data and biological information. Bioinformatics, 21(13), 2988–2993. https://doi.org/10.1093/bioinformatics/bti457
Vaquerizas, J. M., Conde, L., Yankilevich, P., Cabezon, A., Minguez, P., Diaz-Uriarte, R., Al-Shahrour, F., Herrero, J., & Dopazo, J. (2005). GEPAS, an experiment-oriented pipeline for the analysis of microarray gene expression data. Nucleic Acids Research, 33(Web Server), W616–W620. https://doi.org/10.1093/nar/gki500
Diaz-Uriarte, R. (2004). Molecular Signatures from Gene Expression Data (Version 3). arXiv. https://doi.org/10.48550/ARXIV.Q-BIO/0401043
Meléndez, B., Díaz‐Uriarte, R., Cuadros, M., Martínez‐Ramírez, Á., Fernández‐Piqueras, J., Dopazo, A., Cigudosa, J., Rivas, C., Dopazo, J., Martínez‐Delgado, B., & Benítez, J. (2004). Gene expression analysis of chromosomal regions with gain or loss of genetic material detected by comparative genomic hybridization. Genes, Chromosomes and Cancer, 41(4), 353–365. Portico. https://doi.org/10.1002/gcc.20105
Vaquerizas, J. M., Dopazo, J., & Díaz-Uriarte, R. (2004). DNMAD: web-based diagnosis and normalization for microarray data. Bioinformatics, 20(18), 3656–3658. https://doi.org/10.1093/bioinformatics/bth401
Al-Shahrour, F., Díaz-Uriarte, R., & Dopazo, J. (2004). FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics, 20(4), 578–580. https://doi.org/10.1093/bioinformatics/btg455
Herrero, J., Vaquerizas, J. M., Al-Shahrour, F., Conde, L., Mateos, A., Diaz-Uriarte, J. S. R., & Dopazo, J. (2004). New challenges in gene expression data analysis and the extended GEPAS. Nucleic Acids Research, 32(Web Server), W485–W491. https://doi.org/10.1093/nar/gkh421
Herrero, J., Díaz‐Uriarte, R., & Dopazo, J. (2003). An approach to inferring transcriptional regulation among genes from large‐scale expression data. Comparative and Functional Genomics, 4(1), 148–154. Portico. https://doi.org/10.1002/cfg.237
Herrero, J., Díaz-Uriarte, R., & Dopazo, J. (2003). Gene expression data preprocessing. Bioinformatics, 19(5), 655–656. https://doi.org/10.1093/bioinformatics/btg040
Díaz-Uriarte, R. (2001). Territorial intrusion risk and antipredator behaviour: a mathematical model. Proceedings of the Royal Society of London. Series B: Biological Sciences, 268(1472), 1165–1173. https://doi.org/10.1098/rspb.2001.1637
Garland, T., Martin, K. L. M., & Díaz-Uriarte, R. (1997). RECONSTRUCTING ANCESTRAL TRAIT VALUES USING SQUARED-CHANGE PARSIMONY: PLASMA OSMOLARITY AT THE ORIGIN OF AMNIOTES. Amniote Origins, 425–501. https://doi.org/10.1016/b978-012676460-4/50014-7
Bauwens, D., & Diaz-Uriarte, R. (1997). Covariation of Life-History Traits in Lacertid Lizards: A Comparative Study. The American Naturalist, 149(1), 91–111. https://doi.org/10.1086/285980
Diaz, J. A., Diaz-Uriarte, R., & Rodriguez, A. (1996). Influence of Behavioral Thermoregulation on the Use of Vertical Surfaces by Iberian Wall Lizards Podarcis hispanica. Journal of Herpetology, 30(4), 548. https://doi.org/10.2307/1565703
Díaz-Uriarte, R., & Garland, T. (1996). Testing Hypotheses of Correlated Evolution Using Phylogenetically Independent Contrasts: Sensitivity to Deviations from Brownian Motion. Systematic Biology, 45(1), 27–47. https://doi.org/10.1093/sysbio/45.1.27
Al-Shahrour, F., Herrero, J., Mateos, A., Santoyo, J., Diaz-Uriarte, R., & Dopazo, J. (n.d.). Using gene ontology on genome-scale studies to find significant associations of biologically relevant terms to groups of genes. 2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718), 43–52. https://doi.org/10.1109/nnsp.2003.1318003
Díaz-Uriarte, R., Al-Shahrour, F., & Dopazo, J. (n.d.). The Use of Go Terms to Understand the Biological Significance of Microarray Differential Gene Expression Data. Methods of Microarray Data Analysis III, 233–247. https://doi.org/10.1007/0-306-48354-8_16
Error fetching reference data.
Error fetching reference data.
Research lines:
There are no lines of investigation associated with this user.
